1. Overview / What is Socket CAN
--------------------------------
The socketcan package is an implementation of CAN protocols (Controller Area Network) for Linux.  CAN is a networking technology which has widespread use in automation, embedded devices, and automotive fields.  While there have been other CAN implementations for Linux based on character devices, Socket CAN uses the Berkeley socket API, the Linux network stack and implements the CAN device drivers as network interfaces.  The CAN socket API has been designed as similar as possible to the TCP/IP protocols to allow programmers, familiar with network programming, to easily learn how to use CAN sockets.
2. Motivation / Why using the socket API
----------------------------------------
There have been CAN implementations for Linux before Socket CAN so the question arises, why we have started another project.  Most existing implementations come as a device driver for some CAN hardware, they are based on character devices and provide comparatively little functionality.  Usually, there is only a hardware-specific device driver which provides a character device interface to send and receive raw CAN frames, directly to/from the controller hardware. Queueing of frames and higher-level transport protocols like ISO-TP have to be implemented in user space applications.  Also, most character-device implementations support only one single process to open the device at a time, similar to a serial interface.  Exchanging the CAN controller requires employment of another device driver and often the need for adaption of large parts of the application to the new driver's API.
Socket CAN was designed to overcome all of these limitations.  A new protocol family has been implemented which provides a socket interface to user space applications and which builds upon the Linux network layer, so to use all of the provided queueing functionality.  A device driver for CAN controller hardware registers itself with the Linux network layer as a network device, so that CAN frames from the controller can be passed up to the network layer and on to the CAN protocol family module and also vice-versa.  Also, the protocol family module provides an API for transport protocol modules to register, so that any number of transport protocols can be loaded or unloaded dynamically.  In fact, the can core module alone does not provide any protocol and cannot be used without loading at least one additional protocol module.  Multiple sockets can be opened at the same time, on different or the same protocol module and they can listen/send frames on different or the same CAN IDs.  Several sockets listening on the same interface for frames with the same CAN ID are all passed the same received matching CAN frames.  An application wishing to communicate using a specific transport protocol, e.g. ISO-TP, just selects that protocol when opening the socket, and then can read and write application data byte streams, without having to deal with CAN-IDs, frames, etc.
Similar functionality visible from user-space could be provided by a character device, too, but this would lead to a technically inelegant solution for a couple of reasons:
* Intricate usage.  Instead of passing a protocol argument to socket(2) and using bind(2) to select a CAN interface and CAN ID, an application would have to do all these operations using ioctl(2)s.
* Code duplication.  A character device cannot make use of the Linux network queueing code, so all that code would have to be duplicated
  for CAN networking.
* Abstraction.  In most existing character-device implementations, the hardware-specific device driver for a CAN controller directly
  provides the character device for the application to work with.
  This is at least very unusual in Unix systems for both, char and
  block devices.  For example you don't have a character device for a certain UART of a serial interface, a certain sound chip in your computer, a SCSI or IDE controller providing access to your hard
  disk or tape streamer device.  Instead, you have abstraction layers which provide a unified character or block device interface to the application on the one hand, and a interface for hardware-specific device drivers on the other hand.  These abstractions are provided
  by subsystems like the tty layer, the audio subsystem or the SCSI
  and IDE subsystems for the devices mentioned above.
  The easiest way to implement a CAN device driver is as a character device without such a (complete) abstraction layer, as is done by most existing drivers.  The right way, however, would be to add such a
  layer with all the functionality like registering for certain CAN
  IDs, supporting several open file descriptors and (de)multiplexing
  CAN frames between them, (sophisticated) queueing of CAN frames, and providing an API for device drivers to register with.  However, then
  it would be no more difficult, or may be even easier, to use the networking framework provided by the Linux kernel, and this is what Socket CAN does.
  The use of the networking framework of the Linux kernel is just the natural and most appropriate way to implement CAN for Linux.
  
 
 参照http://archive.cnblogs.com/a/1916143/,交叉编译了can-utils 4.0.6的几个重要工具。busybox的文件系统还要移植ip命令。
  1、
  首先配置can0
  ip link set can0 type can tq 125 prop-seg 6  phase-seg1 7 phase-seg2 2 sjw 1
  这时dmesg可以看到sja1000_fpga_pci 0000:07:04.0: setting BTR0=0x01 BTR1=0x1c
  周立功的usbcan-2a测试模块里,波特率250kbs时就是BTR0=0x01 BTR1=0x1c
  2、
  ip -details link show can0 查看一下
  can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UNKNOWN qlen 10
    link/can 
    can state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0 
    bitrate 500000 sample-point 0.875 
    tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1
    sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
    clock 16000000
 
3、接收测试,接收测试软件发送的帧:
# ./candump can0
interface = can0, family = 29, type = 3, proto = 1
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
<0x00000002> [8] 70 01 02 03 04 05 06 07 
 
4、发送测试
./cansend can0 -e 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88
interface = can0, family = 29, type = 3, proto = 1
测试软件上能看到接收的帧
 
5、重启
使用内核文档说的ip link set can0 type can restart-ms 100 会报
RTNETLINK answers: Device or resource busy
使用ifconfig can0 down ;ip link set can0 up type can
即可
 
4种常见波特率:
250kbps:
ip link set can0 type can tq 125 prop-seg 6  phase-seg1 7 phase-seg2 2 sjw 1   
125kbps:                                    
ip link set can0 type can tq 250 prop-seg 6  phase-seg1 7 phase-seg2 2 sjw 1                                       
500kbps:
ip link set can0 type can tq 75 prop-seg 6  phase-seg1 7 phase-seg2 2 sjw 1 
1000kbps:
ip link set can0 up type can bitrate 2000000
常见用法:
ip -details link show can0
ifconfig can0 down ;ip link set can0 up type can
./candump can0 
./cansend   can0 -e 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

linux socket can测试的更多相关文章

  1. linux socket高性能服务器处理框架

    这个博客很多东西 http://blog.csdn.net/luozhonghua2014/article/details/37041765   思考一种高性能的服务器处理框架 1.首先需要一个内存池 ...

  2. OpenFastPath(2):原生态Linux Socket应用如何移植到OpenFastPath上?

    版本信息: ODP(Open Data Plane): 1.19.0.2 OFP(Open Fast Path): 3.0.0 1.存在的问题 OpenFastPath作为一个开源的用户态TCP/IP ...

  3. Linux Socket - 基本socket链接

    0x0000 Linux Socket 函数 bind listen connect accept send recv read write 0x0001 Server绑不上ip 报错位置在bind函 ...

  4. Linux socket 编程中存在的五个隐患

    前言:         Socket API 是网络应用程序开发中实际应用的标准 API.尽管该 API 简单,但是   开发新手可能会经历一些常见的问题.本文识别一些最常见的隐患并向您显示如何避免它 ...

  5. .Net Core Socket 压力测试

    原文:.Net Core Socket 压力测试 .Net Core Socket 压力测试 想起之前同事说go lang写的push service单机可以到达80万连接,于是就想测试下.Net C ...

  6. linux环境下测试环境搭建

    一.linux环境下测试环境搭建过程简述: 1.前端后台代码未分离情况下: 主要步骤为:安装jdk,安装mysql,安装tomcat,将项目代码部署到tomcat/webapps/下. 2.前端后台代 ...

  7. [linux]Socket编程的头文件

    socket编程中需要用到的头文件 sys/types.h:数据类型定义 sys/socket.h:提供socket函数及数据结构 netinet/in.h:定义数据结构sockaddr_in arp ...

  8. Kali Linux Web 渗透测试视频教—第二十课-利用kali linux光盘或者usb启动盘破解windows密码

    Kali Linux Web 渗透测试视频教—第二十课-利用kali linux光盘或者usb启动盘破解windows密码 文/玄魂 目录 Kali Linux Web 渗透测试视频教—第二十课-利用 ...

  9. Kali Linux Web 渗透测试— 第二十课-metasploit.meterpreter

    Kali Linux Web 渗透测试— 第二十课-metasploit.meterpreter 原文链接:http://www.xuanhun521.com/Blog/7fc11b7a-b6cb-4 ...

随机推荐

  1. Android -- 重写BaseAdapter以及对ListView的优化

    背景 对于ListView.GridView.Gallery.Spinner等等,它是它们的适配器,直接继承自接口类Adapter的,使用BaseAdapter时需要重写很多方法,其中最重要的当属ge ...

  2. Spark学习散点总结

    使用Spark 时,通常会有两种模式.一.在交互式编程环境(REPL, a.k.a spark-shell)下实现一些代码,测试一些功能点.二.像MapReduce 那样提前编写好源代码并编译打包(仅 ...

  3. Framework元数据向导错误之BMT-MD-6001与BMT-IMP-0002

    1:错误BMT-MD-6001的两种处理方法 在Framework中创建Project后,运行元数据向导从数据库连接中向物理层导入数据表,报错如下 环境如下:Framework版本:10.2.0,Co ...

  4. Simple TCP/IP Echo Server & Client Application in C#

    1. TCP Server The server’s job is to set up an endpoint for clients to connect to and passively wait ...

  5. matlab练习程序(三阶张量T-QR分解)

    转自:http://www.cnblogs.com/tiandsp/archive/2012/10/31/2747971.html 这里所谓的张量和黎曼那里的张量是不一样的,那个张量更多的用在物理上, ...

  6. jQuery如何获得select选中的值?input单选radio选中的值

    jQuery取得select选中的值 本来以为jQuery("#select1").val();是取得选中的值, 那么jQuery("#select1").te ...

  7. JavaScript操作符

    一元操作符 只能操作一个值的操作符叫做一元操作符. 递增和递减操作符 递增和递减操作符遵循下列规则:         在应用于一个包含有效数字字符的字符串时,先将其转换为数字值,再执行加减 1 的操作 ...

  8. Linode之使用UE实现SSH连接

    在Linode上建立了节点后,选择对应的操作系统(我选用的是Ubuntu 12.04 LTS),然后启动就可以.详细能够參见该文(https://library.linode.com/getting- ...

  9. ISO镜像安装UbuntuKylin 13.04 64位,启动菜单制作实例

    1.将光盘镜像中的vmlinuz.efi.initrd.lz,和镜像本身(ubuntu....iso) 三个文件复制到U盘根目录下.如果下面的方法没成功启动,你可能要把U盘格式化为USB-HDD FA ...

  10. 【LeetCode】81. Search in Rotated Sorted Array II (2 solutions)

    Search in Rotated Sorted Array II Follow up for "Search in Rotated Sorted Array":What if d ...