++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树,返回他的前序遍历的节点的values。

例如:

给定一个二叉树 {1,#,2,3},

  1. 1
  2. \
  3. 2
  4. /
  5. 3

返回 [1,2,3].

笔记:

递归解决方案是微不足道的,你可以用迭代的方法吗?

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

  1. 1
  2. \
  3. 2
  4. /
  5. 3

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?

  1. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1.递归实现
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

void preorder(TreeNode *root, vector<int> &path)
{
    if(root != NULL)
    {
        path.push_back(root->val);
        preorder(root->left, path);
        preorder(root->right, path);
    }
}
vector<int> preorderTraversal(TreeNode *root)
{
    vector<int> path;
    preorder(root, path);
    return path;
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

vector<int> ans = preorderTraversal(pNodeA1);

for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

 输出结果:
8 6 9 2 4 7 1
 

2.非递归实现(迭代实现)

根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

对于任一结点P:

1)访问结点P,并将结点P入栈;

2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

3)直到P为NULL并且栈为空,则遍历结束。

test.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

//非递归前序遍历
vector<int> preorderTraversal(TreeNode *root)
{
    stack<TreeNode *> s;
    vector<int> path;
    TreeNode *p = root;
    while(p != NULL || !s.empty())
    {
        while(p != NULL)
        {
            path.push_back(p->val);
            s.push(p);
            p = p->left;
        }
        if(!s.empty())
        {
            p = s.top();
            s.pop();
            p = p->right;
        }
    }
    return path;
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

vector<int> ans = preorderTraversal(pNodeA1);

for (int i = 0; i < ans.size(); ++i)
    {
        cout << ans[i] << " ";
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

输出结果:

8 6 9 2 4 7 1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 

【遍历二叉树】01二叉树的前序遍历【Binary Tree Preorder Traversal】的更多相关文章

  1. LeetCode 144. 二叉树的前序遍历(Binary Tree Preorder Traversal)

    144. 二叉树的前序遍历 144. Binary Tree Preorder Traversal 题目描述 给定一个二叉树,返回它的 前序 遍历. LeetCode144. Binary Tree ...

  2. 二叉树前序、中序、后序非递归遍历 144. Binary Tree Preorder Traversal 、 94. Binary Tree Inorder Traversal 、145. Binary Tree Postorder Traversal 、173. Binary Search Tree Iterator

    144. Binary Tree Preorder Traversal 前序的非递归遍历:用堆来实现 如果把这个代码改成先向堆存储左节点再存储右节点,就变成了每一行从右向左打印 如果用队列替代堆,并且 ...

  3. C++版 - LeetCode 144. Binary Tree Preorder Traversal (二叉树先根序遍历,非递归)

    144. Binary Tree Preorder Traversal Difficulty: Medium Given a binary tree, return the preorder trav ...

  4. 3月3日(3) Binary Tree Preorder Traversal

    原题 Binary Tree Preorder Traversal 没什么好说的... 二叉树的前序遍历,当然如果我一样忘记了什么是前序遍历的..  啊啊.. 总之,前序.中序.后序,是按照根的位置来 ...

  5. Binary Tree Preorder Traversal on LeetCode in Java

    二叉树的非递归前序遍历,大抵是很多人信手拈来.不屑一顾的题目罢.然而因为本人记性不好.基础太差的缘故,做这道题的时候居然自己琢磨出了一种解法,虽然谈不上创新,但简单一搜也未发现雷同,权且记录,希望于人 ...

  6. 【LeetCode】Binary Tree Preorder Traversal

    Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...

  7. 12. Binary Tree Postorder Traversal && Binary Tree Preorder Traversal

    详见:剑指 Offer 题目汇总索引:第6题 Binary Tree Postorder Traversal            Given a binary tree, return the po ...

  8. 55. Binary Tree Preorder Traversal

    Binary Tree Preorder Traversal My Submissions QuestionEditorial Solution Total Accepted: 119655 Tota ...

  9. Binary Tree Preorder Traversal and Binary Tree Postorder Traversal

    Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...

  10. 【LeetCode】144. Binary Tree Preorder Traversal (3 solutions)

    Binary Tree Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' valu ...

随机推荐

  1. ios 即时通讯 xmpp

    [iPhone高级] 基于XMPP的IOS聊天客户端程序(XMPP服务器架构) http://blog.csdn.NET/kangx6/article/details/7739828 [iPhone高 ...

  2. 再遇xdebug坑

    xdebug.remote_handler=dbgp xdebug.idekey=PHPSTORM ;开启远程调试 xdebug.remote_enable = On ;远程主机 xdebug.rem ...

  3. Codeforces Round #FF (Div. 2) A. DZY Loves Hash

    DZY has a hash table with p buckets, numbered from 0 to p - 1. He wants to insert n numbers, in the ...

  4. Java获取字符串的CRC8校验码(由C程序的代码修改为了Java代码)

    CRC8算法请百度,我也不懂,这里只是把自己运行成功的结构贴出来了.方法CRC8_Tab这里没有处理,因为我的程序中没有用到. package com.crc; public class CCRC8_ ...

  5. Java程序发送邮件

    之前上网有看到过别人总结的使用java程序发送邮件,于是自己下来练习,把自己学习的一些心得总结出来. 首先我们这里需要采用两个jar包: 需要的朋友可以自行上网去CSDN类似的网站上面找 顺便把自己测 ...

  6. iOS 运行时详解

    注:本篇文章转自:http://www.jianshu.com/p/adf0d566c887 一.运行时简介 Objective-C语言是一门动态语言,它将很多静态语言在编译和链接时期做的事放到了运行 ...

  7. [JavaScript]WebBrowser控件下IE版本的检测

    转载请注明原文地址:https://www.cnblogs.com/litou/p/10772272.htm 在客户端检查用户使用的浏览器类型和版本,都是根据navigator.userAgent属性 ...

  8. They're much closer in spirit to how our brains work than feedforward networks.

    http://neuralnetworksanddeeplearning.com/chap1.html Up to now, we've been discussing neural networks ...

  9. rm_invalid_file

    import xlrd import time import sys import os import requests import sqlite3 import threading curPath ...

  10. win8 office 2013激活方法

    先在用win8的人越来越多了,可是某些软件对win8不太友好(也可以说是win8对某些低版本软件不友好),office注册软件office toolkit就是,我在win7上使用2.4.1版本没有问题 ...