self 同类分布

HYSBZ - 1799

给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。Sample Input

10 19

Sample Output

3

Hint

【约束条件】1 ≤ a ≤ b ≤ 10^18

约束:一个数是它自己数位和的倍数,直接dp根本找不到状态,枚举数位和,因为总就162,然后问题就变成了一个数%mod=0,mod是枚举的,想想状态:dp[pos][sum][val],当前pos位上数位和是sum,val就是在算这个数%mod,(从高位算  *10+i),因为我们枚举的数要保证数位和等于mod,还要保证这个数是mod的倍数,很自然就能找到这些状态,显然对于每一个mod,val不能保证状态唯一,这是你要是想加一维dp[pos][sum][val][mod],记录每一个mod的状态(这里sum可以用减法,然而val不行,就只能加一维),那你就想太多了,这样是会超时的(因为状态太多,记忆化效果不好)。这里直接对每一个mod,memset一次就能ac。下面的代码还把limit的当做了状态,因为每次都要初始化,所以能这样,memset在多组外面是不能这样的,不过奇葩的,这代码,如果不把limit当状态,还是在!limit 条件下记录dp,提交一发,时间竟然更短了,可能是每次memset的关系!!!

                                                        ——引自wust_wenhao

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=+,M=+;
ll a[N],dp[N][M][M][];
ll dfs(int pos,int sum,int val,int mod,bool limit){
if(sum-*pos>) return ;
//最坏的情况,这一位及后面的全部为9都不能达到0那就直接GG,这个剪枝不会影响ac
if(!pos) return !sum && !val;
if(dp[pos][sum][val][limit]!=-) return dp[pos][sum][val][limit];
int up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++){
if(sum-i<) break;
ans+=dfs(pos-,sum-i,(val*+i)%mod,mod,limit && i==a[pos]);
}
return dp[pos][sum][val][limit]=ans;
}
ll solve(ll x){
int pos=;ll ans=;
for(;x;x/=) a[++pos]=x%;
for(int i=;i<=pos*;i++){//上限就是每一位都是9
memset(dp,-,sizeof dp);
ans+=dfs(pos,i,,i,true);
}
return ans;
}
int main(){
for(ll a,b;~scanf("%lld%lld",&a,&b);){
printf("%lld\n",solve(b)-solve(a-));
}
return ;
}

HYSBZ - 1799 self 同类分布的更多相关文章

  1. [BZOJ 1799] self 同类分布

    Link: BZOJ 1799 传送门 Solution: 一句话的题目,看得爽,做得烦 一般这类和数位相关的都是数位$dp$吧 不过一开始还是感觉不太可做,毕竟每个数模数不同 但要发现,模数最高也只 ...

  2. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  3. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  4. [Ahoi2009]self 同类分布

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 2357  Solved: 1079[Submit][ ...

  5. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  6. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  7. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  8. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

  9. BZOJ 1799 同类分布

    一开始没想出来..一看题解 我艹直接枚举数位的和啊.....怪不得给50s. 还是太蠢. #include<iostream> #include<cstdio> #includ ...

随机推荐

  1. Java高级特性—反射和动态代理

    1).反射 通过反射的方式可以获取class对象中的属性.方法.构造函数等,一下是实例: 2).动态代理 使用场景: 在之前的代码调用阶段,我们用action调用service的方法实现业务即可. 由 ...

  2. 【共享单车】—— React后台管理系统开发手记:AntD Table高级表格

    前言:以下内容基于React全家桶+AntD实战课程的学习实践过程记录.最终成果github地址:https://github.com/66Web/react-antd-manager,欢迎star. ...

  3. 如果你还有以下这些现象,那你仍是PHP菜鸟:

    最近看了个文章,写的很精辟,跟大家分享一下,这也是我的目标: 如果你还有以下这些现象,那你仍是PHP菜鸟:1. 不会利用如phpDoc这样的工具来恰当地注释你的代码:2. 对优秀的集成开发环境如Zen ...

  4. 黑马程序猿——JAVA高新技术——反射

    ----------android培训.java培训.java学习型技术博客.期待与您交流!------------ 一.对于反射的概念 对于JAVA反射机制是在执行状态中,对于随意一个类.都可以知道 ...

  5. Android学习(十) SQLite 基于SQLiteOpenHelper的操作方式

    main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...

  6. Hadoop最大值的算法中出现的错误(strToDouble)

    错误信息: Exception in thread "main" java.lang.NumberFormatException: For input string: " ...

  7. Odoo many2many command

    CREATE = lambda values: (0, False, values) // (0,False, Values) //创建 UPDATE = lambda id, values: (1, ...

  8. Servlet基本用法二接口和类

    转自:http://www.cnblogs.com/xujian2014/p/4536168.html 一.摘要 本文主要简单介绍开发Servlet需要用到的接口和类. 二.ServletReques ...

  9. mysql返回记录的ROWNUM(转)

      set @rownum = 0; select (@rownum := @rownum + 1) as rownum, name, scores from user order by scores ...

  10. PowerShell-将CSV导入SQL Server

    $database = 'foxdeploy' $server = '.' $table = 'dbo.powershell_test' Import-CSV .\yourcsv.csv | ForE ...