ACM学习历程—BZOJ2956 模积和(数论)
Description
求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
3 4
Sample Output
1
样例说明
答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod
1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4
mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4)
= 1
数据规模和约定
对于100%的数据n,m<=10^9。
由题意:
∑∑((n mod i) * (m
mod j)) ( i≠j)= ∑(n mod i) * ∑(m mod i) - ∑((n mod i) * (m mod i))=
∑(n-[n/i]*i) * ∑(m-[m/i]*i) - ∑(nm-([n/i]+[m/i])i+[n/i][m/i]*i*i)= ∑(n-[n/i]*i)
* ∑(m-[m/i]*i) – n*n*m+∑[n/i]i+∑[m/i]i-∑[n/i][m/i]*i*i(n <= m)
然后利用[n/i]的分组加速运算即可,不过中间过程有多处需要注意的,
m/(m/i)的时候需要和n比较大小,因为可能会超出范围。
此外就是int乘法可能会爆,需要转long long,中间过程别忘了MOD。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long
#define MOD 19940417
#define nsix 3323403 using namespace std; int n, m; LL cal(int len, int x)
{
LL ans = , tmp;
int j;
for (int i = ; i <= len; ++i)
{
j = min(len, x/(x/i));//这一句不用min,j会越界
tmp = ((LL)i+j)*(j-i+)/%MOD;
ans += tmp*(x/i)%MOD;
ans %= MOD;
i = j;
}
return ans;
} inline LL sum(LL x)
{
return x*(x+)%MOD*(*x+)%MOD*nsix%MOD;
} LL cal2(int x, int y)
{
LL ans = , tmp, ttmp;
int j;
for (int i = ; i <= x; ++i)
{
j = min(x/(x/i), y/(y/i));
//j = min(j, x);
tmp = sum(j)-sum(i-);
tmp = (tmp%MOD+MOD)%MOD;
ttmp = ((LL)x/i)*(y/i)%MOD;
ans += tmp*ttmp%MOD;
ans %= MOD;
i = j;
}
return ans;
} void work()
{
if (n > m) swap(n, m);
LL ans, m2, n2, snn, smm, snm, ss;
m2 = (LL)m*m%MOD;
n2 = (LL)n*n%MOD;
smm = cal(m, m);
snn = cal(n, n);
snm = cal(n, m);
ss = cal2(n, m);
ans = m2*n2%MOD - m2*snn%MOD - n2*smm%MOD + snn*smm%MOD;
ans -= m*n2%MOD;
ans += m*snn%MOD;
ans += n*snm%MOD;
ans -= ss;
ans = (ans%MOD+MOD)%MOD;
printf("%lld\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while (scanf("%d%d", &n, &m) != EOF)
work();
return ;
}
ACM学习历程—BZOJ2956 模积和(数论)的更多相关文章
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- ACM学习历程—HDU5668 Circle(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新 ...
- ACM学习历程—HDU5666 Segment(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...
- ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- ACM学习历程—HDU5637 Transform(数论 && 最短路)
题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将 ...
- ACM学习历程—SNNUOJ1132 余数之和(数论)
Description F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数.例如F(6) = 6 % 1 + 6 % ...
- ACM学习历程—HDU1719 Friend(数论)
Description Friend number are defined recursively as follows. (1) numbers 1 and 2 are friend number; ...
- 【bzoj2956】模积和 数论
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...
随机推荐
- 3354 [IOI2005]河流
题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄——名叫 ...
- 爬虫入门【1】urllib.request库用法简介
urlopen方法 打开指定的URL urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, ca ...
- EasyNVR、EasyDSS二次开发之:RTMP、HLS流在web页面进行无插件播放示例Demo代码
不管是基于EasyNVR还是EasyDSS,都是支持无插件直播,这也是未来视频直播的一个趋势.对于传统的浏览器插件播放谁用谁知道: 以上是软件自带播放展示 背景需求 对于EasyNVR和EasyDSS ...
- 1.Python学习---helloworld
1.首先访问http://www.python.org/download/去下载最新的python版本. 2.安装下载包,一路next. 3.为计算机添加安装目录搭到环境变量,如图把python的安装 ...
- A norm is a function. 范数是函数。
[范数]范数是函数.A norm is a function.范数(norm),是具有“长度”概念的函数.在线性代数.泛函分析及相关的数学领域,是一个函数,其为向量空间内的所有向量赋予非零的正长度或大 ...
- ShowModal 代码分析
下面为Delphi中,方法TCustomForm.ShowModal的代码,通过分析以下代码,可以了解ShowModal到底是怎么一回事! 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
- centos6下nginx配置php可用
先查看下所有服务的状态,看看php-fpm有没有正在运行 [root@centos64 html]# service --status-all php-fpm (pid 3568) 正在运行... ...
- linux系统环境下搭建coreseek(+mmseg3) (good)
1.下载并解压coreseek软件,操作命令如下: wget http://www.coreseek.cn/uploads/csft/3.2/coreseek-3.2.14.tar.gz 说明:文件下 ...
- linux清空屏幕
linux清空屏幕 clear ctrl+L reset也是真正的清空终端屏幕,这个命令执行起来有点慢,但它的兼容性显然比之前的那个好,在终端控制错乱时非常有用
- PAT 天梯赛 L2-016. 愿天下有情人都是失散多年的兄妹 【BFS】
题目链接 https://www.patest.cn/contests/gplt/L2-016 思路 用BFS 每层 遍历当代 并且查找当代是否有重复 有重复就跳出 然后 POP 并且将他们的下一代 ...