Description

 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。

  

Input

第一行两个数n,m。

Output

  一个整数表示答案mod 19940417的值

Sample Input

3 4

Sample Output

1

样例说明
  答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod
1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4
mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4)
= 1

数据规模和约定
  对于100%的数据n,m<=10^9。

由题意:

∑∑((n mod i) * (m
mod j)) ( i≠j)= ∑(n mod i) * ∑(m mod i) - ∑((n mod i) * (m mod i))=
∑(n-[n/i]*i) * ∑(m-[m/i]*i) - ∑(nm-([n/i]+[m/i])i+[n/i][m/i]*i*i)= ∑(n-[n/i]*i)
* ∑(m-[m/i]*i) – n*n*m+∑[n/i]i+∑[m/i]i-∑[n/i][m/i]*i*i(n <= m)

然后利用[n/i]的分组加速运算即可,不过中间过程有多处需要注意的,

m/(m/i)的时候需要和n比较大小,因为可能会超出范围。

此外就是int乘法可能会爆,需要转long long,中间过程别忘了MOD

 

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long
#define MOD 19940417
#define nsix 3323403 using namespace std; int n, m; LL cal(int len, int x)
{
LL ans = , tmp;
int j;
for (int i = ; i <= len; ++i)
{
j = min(len, x/(x/i));//这一句不用min,j会越界
tmp = ((LL)i+j)*(j-i+)/%MOD;
ans += tmp*(x/i)%MOD;
ans %= MOD;
i = j;
}
return ans;
} inline LL sum(LL x)
{
return x*(x+)%MOD*(*x+)%MOD*nsix%MOD;
} LL cal2(int x, int y)
{
LL ans = , tmp, ttmp;
int j;
for (int i = ; i <= x; ++i)
{
j = min(x/(x/i), y/(y/i));
//j = min(j, x);
tmp = sum(j)-sum(i-);
tmp = (tmp%MOD+MOD)%MOD;
ttmp = ((LL)x/i)*(y/i)%MOD;
ans += tmp*ttmp%MOD;
ans %= MOD;
i = j;
}
return ans;
} void work()
{
if (n > m) swap(n, m);
LL ans, m2, n2, snn, smm, snm, ss;
m2 = (LL)m*m%MOD;
n2 = (LL)n*n%MOD;
smm = cal(m, m);
snn = cal(n, n);
snm = cal(n, m);
ss = cal2(n, m);
ans = m2*n2%MOD - m2*snn%MOD - n2*smm%MOD + snn*smm%MOD;
ans -= m*n2%MOD;
ans += m*snn%MOD;
ans += n*snm%MOD;
ans -= ss;
ans = (ans%MOD+MOD)%MOD;
printf("%lld\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while (scanf("%d%d", &n, &m) != EOF)
work();
return ;
}

ACM学习历程—BZOJ2956 模积和(数论)的更多相关文章

  1. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  2. ACM学习历程—HDU5668 Circle(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新 ...

  3. ACM学习历程—HDU5666 Segment(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...

  4. ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...

  5. BZOJ2956: 模积和(数论分块)

    题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...

  6. ACM学习历程—HDU5637 Transform(数论 && 最短路)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将 ...

  7. ACM学习历程—SNNUOJ1132 余数之和(数论)

    Description F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数.例如F(6) = 6 % 1 + 6 % ...

  8. ACM学习历程—HDU1719 Friend(数论)

    Description Friend number are defined recursively as follows. (1) numbers 1 and 2 are friend number; ...

  9. 【bzoj2956】模积和 数论

    题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...

随机推荐

  1. poj3292

    Semi-prime H-numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8677   Accepted: 3 ...

  2. Collecting Bugs (概率dp)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  3. 九度OJ 1323:World Cup Betting(世界杯) (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:492 解决:219 题目描述: With the 2010 FIFA World Cup running, football fans th ...

  4. SVM vs. Softmax

    http://cs231n.github.io/linear-classify/

  5. This instability is a fundamental problem for gradient-based learning in deep neural networks. vanishing exploding gradient problem

    The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient pro ...

  6. Linux项目部署发布

    Linux项目部署发布 1.部署环境准备,准备python3和虚拟环境解释器,virtualenvwrapper pip3 install -i https://pypi.douban.com/sim ...

  7. URL重定向之一.htaccess文件和AllowOverride指令

    通常利用Apache的rewrite模块对URL进行重写的时候,rewrite规则会写在 .htaccess文件里.但是要使Apache能够正常读取 .htaccess文件的内容,就必须对 .htac ...

  8. keeplive使用

    一.简介 Keepalived是一个免费开源的,用C编写的类似于layer3, 4 & 7交换机制软件,具备我们平时说的第3层.第4层和第7层交换机的功能.主要提供loadbalancing( ...

  9. Qt之任务栏系统托盘图标

    转自  --> http://blog.csdn.net/qivan/article/details/7506306 托盘图标,一个自己脑子出现很久的词,可惜自己都没动手去实现.最近看见的,听见 ...

  10. AdobeFlashPlayer.资料

    1.chrome 设置 chrome-->设置-->高级-->内容设置-->Flash 2. 3. 4. 5.