首先说一下什么是唯一分解定理

唯一分解定理:任何一个大于1的自然数N,如果N不是质数,那么N可以分解成有限个素数的乘积;例:N=(p1^a1)*(p2^a2)*(p3^a3)......其中p1<p2<p3......

所以当我们求两个很大的数相除时  唯一分解定理是一个不错的选择,不会爆范围

下面具体说一下怎么求唯一分解定理:

首先我们需要知道所有的素数:  用埃式算法打表求得:

void is_prime()
{
cnt=;
for(int i=;i<=maxn;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
for(int j=i*;j<=maxn;j+=i) vis[j]=true;
}
}
}

接下来 就是求pi和ai了,

void solve(ll n,ll d)
{
for(int i=;i<cnt;i++)
{
while(n%prime[i]==)
{
n/=prime[i];
e[i]+=d;
}
if(n==) return ;
}
}

下面看一道例题:

题目链接:https://vjudge.net/problem/UVA-10375

题目大意:用C(p,q)/C(r,s)  最后结果保留5位小数

思路:这道题不用唯一分解定理就不好做了,阶层相乘很有可能会爆数据范围,总之挺麻烦的,但是用唯一分解定理跟快就能A了  很简单  看代码应该就能明白了

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
typedef long long ll;
const int maxn=1e4+;
ll prime[maxn];
ll e[maxn];
bool vis[maxn];
ll cnt;
void is_prime()
{
cnt=;
for(int i=;i<=maxn;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
for(int j=i*;j<=maxn;j+=i) vis[j]=true;
}
}
}
void solve(ll n,ll d)//n为相乘的数 当为分子时d为1 为分母时d为-1 很好理解 对应指数+1或-1嘛
{
for(int i=;i<cnt;i++)
{
while(n%prime[i]==)
{
n/=prime[i];
e[i]+=d;
}
if(n==) return ;
}
}
int main()
{
ll p,q,r,s;
double ans;
memset(vis,false,sizeof(vis));
is_prime();
// for(int i=0;i<cnt;i++) cout<<prime[i]<<" ";
// cout<<endl;
while(cin>>p>>q>>r>>s)
{
ans=;
memset(e,,sizeof(e));
for(int i=p;i>=;i--) solve(i,);
for(int i=p-q;i>=;i--) solve(i,-);
for(int i=q;i>=;i--) solve(i,-);
for(int i=r-s;i>=;i--) solve(i,);
for(int i=s;i>=;i--) solve(i,);
for(int i=r;i>=;i--) solve(i,-);
for(int i=;i<cnt;i++)
if(e[i]) ans*=pow(prime[i],e[i]); printf("%.5lf\n",ans);
}
}

Choose and divide(唯一分解定理)的更多相关文章

  1. uva10375 Choose and Divide(唯一分解定理)

    uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...

  2. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. UVA 10375 Choose and divide【唯一分解定理】

    题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...

  4. 【暑假】[数学]UVa 10375 Choose and divide

    UVa 10375 Choose and divide 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19601 思路 ...

  5. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  6. POJ - 1845 G - Sumdiv (唯一分解定理)

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...

  7. B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板

    You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...

  8. NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  9. 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...

随机推荐

  1. Entity Framework Tutorial Basics(1):Introduction

    以下系列文章为Entity Framework Turial Basics系列 http://www.entityframeworktutorial.net/EntityFramework5/enti ...

  2. C++11新标准:nullptr关键字

    一.nullptr的意义 1.NULL在C中的定义 #define NULL (void*)0 2.NULL在C++中的定义 #ifndef NULL #ifdef __cplusplus #defi ...

  3. hadoop学习记录--hdfs文件上传过程源码解析

    本节并不大算为大家讲接什么是hadoop,或者hadoop的基础知识因为这些知识在网上有很多详细的介绍,在这里想说的是关于hdfs的相关内容.或许大家都知道hdfs是hadoop底层存储模块,专门用于 ...

  4. Hexo下Next主题配置与优化

    使用Next主题 在这里Downloads Next主题代码 将下载的代码放在myBlog/theme/next目录下 设置站点myBlog/_config.yml的theme字段值为next 生成新 ...

  5. CHUI类

    自定义控件程序运行流程 setNeedsLayOut和setNeedsDisplay区别 masonry使用技巧 1.普通展示 UILabel     UIView     UI控件的位置     U ...

  6. day06.1-磁盘管理

    1. 添加磁盘 打开虚拟机,依次点击"编辑虚拟机设置" |—> "添加" |—> "硬盘" |—> "选择硬盘类 ...

  7. redis安装及快速开始

    Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...

  8. datetime问题

    DateUtil.format(DateTime.now(), DatePattern.NORM_DATE_PATTERN);. 此方法将现在时间转为yy--mm--dd格式   mysql中日期运算 ...

  9. echarts设置地图大小比例,大小设置

    设置地图大小可通过以下属性设置: geo.aspectScale number [ default: 0.75 ] 这个参数用于 scale 地图的长宽比. 最终的 aspect 的计算方式是:geo ...

  10. RPM软件包管理以及使用方法

    Red Hat Package Manager(简称RPM)工具包由于其使用简单操作方便,可以实现软件的查询.安装.卸载.升级和验证等功能,为Linux使用者节省大量的时间,所以被广泛的用于Linux ...