heapq模块
该模块提供了堆排序算法的实现。堆是二叉树,最大堆中父节点大于或等于两个子节点,最小堆父节点小于或等于两个子节点。
创建堆
heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构
import heapq
# 第一种
"""
函数定义:
heapq.heappush(heap, item)
- Push the value item onto the heap, maintaining the heap invariant.
heapq.heappop(heap)
- Pop and return the smallest item from the heap, maintaining the heap invariant.
If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0].
"""
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆
print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
# 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
heapq 模块还有一个heapq.merge(*iterables)
方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。
类似于sorted(itertools.chain(*iterables))
,但返回的是可迭代的。
"""
函数定义:
heapq.merge(*iterables)
- Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an iterator over the sorted values.
- Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).
"""
import heapq
num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2)
res = heapq.merge(num1, num2)
print(list(res))
访问堆内容
堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。
import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums)
print(heapq.heappop(nums))
# out: 2
# 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]
如果需要删除堆中最小元素并加入一个元素,可以使用heapq.heaprepalce()
函数
import heapq
nums = [1, 2, 4, 5, 3]
heapq.heapify(nums)
heapq.heapreplace(nums, 23)
print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]
获取堆最大或最小值
如果需要获取堆中最大或最小的范围值,则可以使用heapq.nlargest()
或heapq.nsmallest()
函数
"""
函数定义:
heapq.nlargest(n, iterable[, key])¶
- Return a list with the n largest elements from the dataset defined by iterable.
- key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
- Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
import heapq
nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums))
"""
输出:
[5, 4, 3]
[1, 2, 3]
"""
这两个函数还接受一个key参数,用于dict或其他数据结构类型使用
import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)
"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""
heapq应用
实现heap堆排序算法
>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
该算法和sorted(iterable)
类似,但是它是不稳定的。
堆的值可以是元组类型,可以实现对带权值的元素进行排序。
>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')
heapq模块的更多相关文章
- Python heapq 模块的实现 - A Geek's Page
Python heapq 模块的实现 - A Geek's Page Python heapq 模块的实现
- Python常用数据结构之heapq模块
Python数据结构常用模块:collections.heapq.operator.itertools heapq 堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小 ...
- python标准库:collections和heapq模块
http://blog.csdn.net/pipisorry/article/details/46947833 python额外的数据类型.collections模块和heapq模块的主要内容. 集合 ...
- Python heapq模块
注意,默认的heap是一个小顶堆! heapq模块提供了如下几个函数: heapq.heappush(heap, item) 把item添加到heap中(heap是一个列表) heapq.heappo ...
- python heapq模块使用
Python内置的heapq模块 Python3.4版本中heapq包含了几个有用的方法: heapq.heappush(heap,item):将item,推入heap >>> it ...
- python 中的堆 (heapq 模块)应用:Merge K Sorted Lists
堆是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因为实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短 ...
- python3-开发进阶 heapq模块(如何查找最大或最小的N个元素)
一.怎样从一个集合中获得最大或者最小的 N 个元素列表? heapq 模块有两个函数:nlargest() 和 nsmallest() 可以完美解决这个问题. import heapq nums = ...
- python3中的heapq模块使用
heapq-堆排序算法 heapq实现了一个适合与Python的列表一起使用的最小堆排序算法. 二叉树 树中每个节点至多有两个子节点 满二叉树 树中除了叶子节点,每个节点都有两个子节点 什么是完全二叉 ...
- 算法-heapq模块优先队列
heapq模块, 优先队列,小顶堆,最少值放在顶部,值越小,优先级越高 heapq.heappop(heap) 从堆中弹出最小的元素,并重新调整 heapq.heappush(heap, item)新 ...
随机推荐
- 把自定义的demuxer加入ffmpeg源码
.简介:把上一篇文章中的demuxer加入ffmpeg源码中去,使可以用命令行方式调用自定义的demuxer 第一步: 在libavformat目录下新建mkdemuxer.c和mkdemuxer.h ...
- OSS阿里云文件上传 demo。
所需jar包: aliyun-openservices-1.2.3.jar jdom-1.1.jar commons-codec-1.4.jar commons-logging-1.1.1.jar g ...
- ACM学习历程—Hihocoder 1289 403 Forbidden(字典树 || (离线 && 排序 && 染色))
http://hihocoder.com/problemset/problem/1289 这题是这次微软笔试的第二题,过的人比第三题少一点,这题一眼看过去就是字符串匹配问题,应该可以使用字典树解决.不 ...
- CSS之EM相对单位
之前以为em单位只是在font-size中起到继承作用, 后来慢慢觉得,继承,应该是在几乎所有样式中都可以是实现的,比如height,width,border... 今天才简单测试了下,果真是可以实现 ...
- C++STL库中map容器常用应用
#include<iostream> #include<cstdio> #include<map> //按键值大小构成二叉搜索树 using namespace s ...
- 如何在windows 2003(虚拟主机)上面部署MVC3
相信有很多朋友和我一样遇到了这个问题,网上大牛说的都不是很清楚,关于这个问题我详细的跟进一下 这个问题呢大致分为两种情况 一.有服务器的控制权限,这个就简单很多, 1.安装mvc3支持组件2.如果可以 ...
- 批量创建10个系统帐号tianda01-tianda10并设置密码
#.添加用户 useradd tianda01 #.非交互式给密码 echo "pass"|passwd --stdin tianda #.- 加0思路 ()..} () #随机密 ...
- css菜鸟之HTML 中块级元素设置 height:100% 的实现
HTML 中块级元素设置 height:100% 的实现 当你设置一个页面元素的高度(height)为100%时,期望这样元素能撑满整个浏览器窗口的高度,但大多数情况下,这样的做法没有任何效果. 为什 ...
- MongoDB一些基本的命令
Win+R进入Dos命令窗口,输入cmd,进入MongoDB exe文件的所在目录,比如我的在E:\MongoDB\bin,分别执行:“E:”回车,然后:"cd mongodb/bin&qu ...
- Flask14 渲染问题、API、项目文档
3 前端渲染和后端渲染 这两种渲染都属于动态页面 区分前后端渲染的关键点是站在浏览器的角度 3.1 后端渲染 浏览器请求服务器后获取到的是完整的HTML页面(即:后台已经组装好HTML文件啦),利用f ...