Luogu P4161 [SCOI2009]游戏 数论+DP
ywy神犇太巨辣!!一下就明白了!!
题意:求$lcm(a_1,a_2,...,a_k)$的种类,其中$\Sigma\space a_i <=n$,$a_i$相当于环长
此处的$DP$,相当于是在求$lcm(a_1,a_2,...,a_k)$按算术基本定理分解的式子的种类。
感性理解一下,一堆>=2的数,加起来一定比乘起来小,但是我们又要保证他们互质(否则就亏了,不如同时去掉gcd),所以就每个数就是一个质数的幂。
所以这一堆数大致就是形如$p_i^{k_i}$这种样子的
所以可以背包转移:把每个质数当做物品,注意转移时的顺序,用质数$p$转移时不能访问已经经过$p$转移过的(类似01背包的倒序循环),否则不满足互质;
#include<cstdio>
#include<iostream>
#define R register int
const int N=;
using namespace std;
int n,cnt,pri[N];
bool v[N];
long long f[N],ans;
inline void PRI() {
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true; if(i%pri[j]==) break;
}
}
}
signed main() {
scanf("%d",&n); f[]=; PRI();
for(R i=;i<=cnt;++i) for(R j=n;j>=;--j)
for(R k=pri[i];k<=j;k*=pri[i]) f[j]+=f[j-k];
for(R i=;i<=n;++i) ans+=f[i]; printf("%lld\n",ans);
}
2019.05.25
Luogu P4161 [SCOI2009]游戏 数论+DP的更多相关文章
- luogu P4161 [SCOI2009]游戏
传送门 我们发现整个大置换中,会由若干形如\((a_1\rightarrow a_2,a_2\rightarrow a_3,...a_{n-1}\rightarrow a_n,a_n\rightarr ...
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- LG P4161 [SCOI2009]游戏/LG P6280 [USACO20OPEN]Exercise G
Description(P4161) windy学会了一种游戏. 对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应. 最开始windy把数字按顺序1,2,3,……,N写一排在纸上. 然后再在 ...
- Luogu P4158 [SCOI2009]粉刷匠(dp+背包)
P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...
- [BZOJ 1025] [SCOI2009] 游戏 【DP】
题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...
- BZOJ 1025: [SCOI2009]游戏 [置换群 DP]
传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...
- P4161 [SCOI2009]游戏
传送门 首先这题的本质就是把\(n\)分成若干个数的和,求他们的\(lcm\)有多少种情况 然后据说有这么个结论:若\(p_1^{c_1}+p_2^{c_2}+...+p_m^{c_m}\leq n\ ...
- bzoj1025 [SCOI2009]游戏——因数DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...
- [bzoj 1025][SCOI2009]游戏(DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...
随机推荐
- [BZOJ2962][清华集训]序列操作
bzoj luogu 题意 有一个长度为\(n\) 的序列,有三个操作: \(I \ \ a\ b\ c\ :\)表示将\([a,b]\)这一段区间的元素集体增加\(c\): \(R \ \ a\ b ...
- github 在线 创建文件夹
参考: http://webapps.stackexchange.com/questions/36411/create-a-folder-in-github-via-the-web-interface
- 使用Visual Studio进行单元测试-Part5
本文主要介绍Visual Studio(2012+)单元测试框架的一些技巧: 如何模拟类的静态构造函数 如何测试某方法被调用过 如何测试某方法执行的次数 并行编程测试注意事项 一.如何模拟类的静态构造 ...
- 2018.10.30 一题 洛谷4660/bzoj1168 [BalticOI 2008]手套——思路!问题转化与抽象!+单调栈
题目:https://www.luogu.org/problemnew/show/P4660 https://www.lydsy.com/JudgeOnline/problem.php?id=1168 ...
- 堆排序的JavaScript实现
思想 把数组当做二叉树来排序: 索引0是树的根节点: 除根节点外,索引为N的节点的父节点索引是(N-1)/2: 索引为N的节点的左子节点索引是 2*N+1; 索引为N的节点的右子节点索引是 2*N+2 ...
- Express Route的配置
ExpressRoute在中国已经Preview了. 本篇文章讲介绍ExpressRoute如何配置. Express Route的逻辑拓扑结构: 在配置Express Route之前,需要做VLAN ...
- 【转】 Pro Android学习笔记(四一):Fragment(6):数据保留
目录(?)[-] 通过fragment参数实现数据保留 对TitleFragment进行修改 对DetailActivity进行修改 通过savedInstanceState进行数据保留 保留frag ...
- pycharm安装 package报错:module 'pip' has no attribute 'main'
转自: <pycharm安装 package报错:module 'pip' has no attribute 'main'> https://www.cnblogs.com/Fordest ...
- 九 fork/join CompletableFuture
1: Fork/join fork/join: fork是分叉的意思, join是合并的意思. Fork/Join框架:是JAVA7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务 ...
- js浮点数运算出现误差解决方案
1.数据展示类(使用 toPrecision 凑整并 parseFloat 转成数字后再显示) parseFloat(1.4000000000000001.toPrecision(12)) === 1 ...