POJ:1995-Raising Modulo Numbers(快速幂)
Raising Modulo Numbers
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 9512 Accepted: 5783
Description
People are different. Some secretly read magazines full of interesting girls’ pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow:
Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players’ experience it is possible to increase the difficulty by choosing higher numbers.
You should write a program that calculates the result and is able to find out who won the game.
Input
The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.
Output
For each assingnement there is the only one line of output. On this line, there is a number, the result of expression
(A1^B1+A2^B2+ … +AH^BH)mod M.
Sample Input
3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132
Sample Output
2
13195
13
解题心得:
- 其实直接按照题目中给的公式计算就行了,只不过需要用一下快速幂,这个题主要也就考察了一个快速幂。
#include <algorithm>
#include <cstring>
#include <stdio.h>
#include <vector>
using namespace std;
typedef long long ll;
ll m,n;
ll mod_mult(ll n,ll p) {
ll res = 1;
while(p) {
if(p & 1)
res = (res * n) % m;
n = (n * n) % m;
p >>= 1;
}
return res % m;
}
void Solve() {
ll ans = 0;
scanf("%lld%lld",&m,&n);
for(int i=0;i<n;i++){
ll a,b;
scanf("%lld%lld",&a,&b);
ans += mod_mult(a,b);
ans %= m;
}
printf("%lld\n",ans);
}
int main() {
int t;
scanf("%d",&t);
while(t--) {
Solve();
}
return 0;
}
POJ:1995-Raising Modulo Numbers(快速幂)的更多相关文章
- POJ 1995 Raising Modulo Numbers (快速幂)
题意: 思路: 对于每个幂次方,将幂指数的二进制形式表示,从右到左移位,每次底数自乘,循环内每步取模. #include <cstdio> typedef long long LL; LL ...
- POJ 1995:Raising Modulo Numbers 快速幂
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5532 Accepted: ...
- poj 1995 Raising Modulo Numbers【快速幂】
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5477 Accepted: ...
- POJ1995 Raising Modulo Numbers(快速幂)
POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...
- poj 1995 Raising Modulo Numbers 题解
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6347 Accepted: ...
- POJ 1995 Raising Modulo Numbers 【快速幂取模】
题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...
- POJ 1995 Raising Modulo Numbers(快速幂)
嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...
- POJ 1995 Raising Modulo Numbers
快速幂取模 #include<cstdio> int mod_exp(int a, int b, int c) { int res, t; res = % c; t = a % c; wh ...
- ZOJ2150 Raising Modulo Numbers 快速幂
ZOJ2150 快速幂,但是用递归式的好像会栈溢出. #include<cstdio> #include<cstdlib> #include<iostream> # ...
- POJ1995:Raising Modulo Numbers(快速幂取余)
题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> ...
随机推荐
- Python元组类型、字典类型及常用操作
一.元组类型 1.用途 记录多个值,当多个值没有改的需求,此时用元组更合适,Python的元组与列表类似,不同之处在于元组的元素不能修改. 2.定义方式 在()内用逗号分隔开多个任意类型的值 t=(1 ...
- C++常用字符串分割方法(转)
1.用strtok函数进行字符串分割 原型: char *strtok(char *str, const char *delim); 功能:分解字符串为一组字符串. 参数说明:str为要分解的字符串, ...
- 01、Scala介绍与安装
01.Scala介绍与安装 1.1 Scala介绍 Scala是对java语言脚本化,特点是就是使不具备脚本化的java语言能够采用脚本化方式来使用,使其具有脚本语言简单.所见即所得的特点,并且编程效 ...
- Xcode SDK模拟器安装及安装路径
将SDK想要装的版本,将SDK包放入‘mac中的SDK安装路径’.再将Xcode模拟器重启. 再打开Xcode模拟器,就可以在菜单栏的 ‘硬件’->’设备‘->’iPhone Retina ...
- httpclient使用head添加cookie
最近在使用接口时候,我使用get请求时,需要携带登录态,所以在get请求的时候我需要在head里面把cookie给加上,添加方式get和post完全不一样 Post方式添加cookie httpPos ...
- hdu-2844&&POJ-1742 Coins---多重背包
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2844 题目大意: Tony想要买一个东西,他只有n中硬币每种硬币的面值为a[i]每种硬币的数量为c[ ...
- bzoj3882 [Wc2015]K小割
Description Input Output Sample Input 3 3 1 3 100 1 2 3 2 3 4 1 3 5 Sample Output 8 9 12 -1 正解:暴搜+ ...
- 立体最短路径,广搜(POJ2251)
题目链接:http://poj.org/problem?id=2251 参考了一下大神们的解法.也有用深搜的.然而,之前不久看到一句话,最短路径——BFS. 参考:http://blog.csdn.n ...
- MapReduce计算每年最大值
1. 测试文件生成程序,参考 https://www.cnblogs.com/jonban/p/10555364.html MapReduce程序示例如下: 2. 新建Maven项目 hadoop ...
- 使用maven搭建ssm项目配置+tomact
一.代码自动配置:https://www.cnblogs.com/weibanggang/p/10043201.html 二.手动配置 1.创建好maven项目,在pom.xml配置文件 <!- ...