机器学习:集成学习(Soft Voting Classifier)
一、Hard Voting 与 Soft Voting 的对比
1)使用方式
- voting = 'hard':表示最终决策方式为 Hard Voting Classifier;
- voting = 'soft':表示最终决策方式为 Soft Voting Classifier;
2)思想
- Hard Voting Classifier:根据少数服从多数来定最终结果;
- Soft Voting Classifier:将所有模型预测样本为某一类别的概率的平均值作为标准,概率最高的对应的类型为最终的预测结果;
Hard Voting
- 模型 1:A - 99%、B - 1%,表示模型 1 认为该样本是 A 类型的概率为 99%,为 B 类型的概率为 1%;
Soft Voting
- 将所有模型预测样本为某一类别的概率的平均值作为标准;
- Hard Voting 投票方式的弊端:
- 如上图,最终的分类结果不是由概率值更大的模型 1 和模型 4 决定,而是由概率值相对较低的模型 2/3/5 来决定的;
二、各分类算法的概率计算
- Soft Voting 的决策方式,要求集合的每一个模型都能估计概率;
1)逻辑回归算法
- P = σ( y_predict )
2)kNN 算法
- k 个样本点中,数量最多的样本所对应的类别作为最终的预测结果;
- kNN 算法也可以考虑权值,根据选中的 k 个点距离待预测点的距离不同,k 个点的权值也不同;
- P = n / k
- n:k 个样本中,最终确定的类型的个数;如下图,最终判断为 红色类型,概率:p = n/k = 2 / 3;
3)决策树算法
- 通常在“叶子”节点处的信息熵或者基尼系数不为 0,数据集中包含多种类别的数据,以数量最多的样本对应的类别作为最终的预测结果;(和 kNN 算法类似)
- P = n / N
- n:“叶子”中数量最多的样本的类型对应的样本数量;
- N:“叶子”中样本总量;
4)SVM 算法
- 在 scikit-learn 中的 SVC() 中的一个参数:probability
- probability = True:SVC() 返回样本为各个类别的概率;(默认为 False)
from sklearn.svm import SVC
svc = SVC(probability=True) - 计算样本为各个类别的概率需要花费较多时间;
三、scikit-learn 中使用集成分类器:VotingClassifier
1)模拟数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
2)voting = 'hard':使用 Hard Voting 做决策
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier # 实例化
voting_clf = VotingClassifier(estimators=[
('log_clf', LogisticRegression()),
('svm_clf', SVC()),
('dt_clf', DecisionTreeClassifier(random_state=666))
], voting='hard') voting_clf.fit(X_train, y_train)
voting_clf.score(X_test, y_test)
# 准确率:0.896
3)voting = 'soft':使用 Soft Voting 做决策
voting_clf = VotingClassifier(estimators=[
('log_clf', LogisticRegression()),
('svm_clf', SVC(probability=True)),
('dt_clf', DecisionTreeClassifier(random_state=666))
], voting='soft') voting_clf.fit(X_train, y_train)
voting_clf.score(X_test, y_test)
# 准确率:0.912- 使用 Soft Voting 时,SVC() 算法的参数:probability=True
机器学习:集成学习(Soft Voting Classifier)的更多相关文章
- 【笔记】集成学习入门之soft voting classifier和hard voting classifier
集成学习入门之soft voting classifier和hard voting classifier 集成学习 通过构建并结合多个学习器来完成学习任务,一般是先产生一组"个体学习器&qu ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- 集成学习-Majority Voting
认识 集成学习(Ensemble Methods), 首先是一种思想, 而非某种模型, 是一种 "群体决策" 的思想, 即对某一特定问题, 用多个模型来进行训练. 像常见的单个模型 ...
- 机器学习--集成学习(Ensemble Learning)
一.集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好) ...
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- python大战机器学习——集成学习
集成学习是通过构建并结合多个学习器来完成学习任务.其工作流程为: 1)先产生一组“个体学习器”.在分类问题中,个体学习器也称为基类分类器 2)再使用某种策略将它们结合起来. 通常使用一种或者多种已有的 ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
随机推荐
- iOS_网络编程
网络编程中有以下几种方式向服务器进行提交数据: IOS同步请求.异步请求.GET请求.POST请求 1.同步请求可以从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可 ...
- ARC管理内存(一)
相关概念 栈 当程序执行某个方法(或函数)时,会从内存中名为栈(stack)的区域分配一块内存空间,这块内存空间称为帧(frame).帧负责保存程序在方法内声明的变量的值.在方法内声明的变量称为局部变 ...
- INSPIRED启示录 读书笔记 - 第9章 产品副经理
发现帮手 从本质上讲,产品就是创意,产品经理的职责是想出好点并加以实现.我们需要好点子,有些想法是我们自己的创意,但如果仅依靠自己,就会严重限制创意的发挥 做产品要找公司最聪明的人合作,发现公司里潜在 ...
- vRO 7 添加RestHost证书报错
报错类似的错误: Cannot execute request: ; java.security.cert.CertificateException: Certificates does not co ...
- wampserver安装在服务器中,但是mysql不能远程登录的解决方案
利用mysql workbench或者Navicat连接服务器的mysql时,有时候会出现拒绝访问, 因为在mysql中没有赋予其他用户权限,只能本地登录,所以要进行设置. 设置如下: 打开mysql ...
- 为什么可以Ping通IP地址,但Ping不通域名?
能否ping通IP地址,与能否解析域名是两回事不能ping通IP地址,说明对方禁止ICMP报文或对方没有开机等解析域名只是将域名翻译成IP地址,不论该IP地址是否能够正常访问 问题是ping域名的时候 ...
- JSON解析字符串
JSON解析字符串 JSON 解析字符串时,应按严格的标准,否则无法解析: str1 = '{"str":"string","number" ...
- 域名注册中EAP期间是什么意思
所谓域名申请期间的EAP指的是,域名优先注册期,行业上也称为“早期接入期”,这个期间的时间是由该域名所在的管理注册局定,而这个EPA期的时间长度也不一样,有的是一个星期,也有的长达两个星期. 域名EA ...
- linux中动态链接库的创建与使用
LINUX系统中动态链接库的创建与使用 http://www.cnblogs.com/ardar/articles/357321.html 正常C源文件编写,编译时-shared即可得到SO, gcc ...
- Navicat 导入Excel与增加主键
1.当你需要导入某Excel文件时,你必须把这个lxsl文件用Excel先打开(与其他软件的导入有点不太,其他会报错已占用之类的) 2.设置主键 当你打开你导入的Excel文件时,会显示无主键,需要你 ...