Beauty of Sequence

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 384    Accepted Submission(s): 168

Problem Description
Sequence is beautiful and the beauty of an integer sequence is defined as follows: removes all but the first element from every consecutive group of equivalent elements of the sequence (i.e. unique function in C++ STL) and the summation of rest integers is the beauty of the sequence.

Now you are given a sequence A of n integers {a1,a2,...,an}. You need find the summation of the beauty of all the sub-sequence of A. As the answer may be very large, print it modulo 109+7.

Note: In mathematics, a sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example {1,3,2} is a sub-sequence of {1,4,3,5,2,1}.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer n (1≤n≤105), indicating the size of the sequence. The following line contains n integers a1,a2,...,an, denoting the sequence(1≤ai≤109).

The sum of values n for all the test cases does not exceed 2000000.

 
Output
For each test case, print the answer modulo 109+7 in a single line.
 
Sample Input
3
5
1 2 3 4 5
4
1 2 1 3
5
3 3 2 1 2
 
Sample Output
240
54
144
 
Source
 
 
题目大意:定义了beauty,给出一个整数序列, 去除序列中连续相邻的重复元素(只保留一个), 剩下来的数的和称之为序列的beauty.给你一个序列,问你该序列的所有子序列的beauty和对1e9+7的结果。
 
解题思路:
 
我们枚举1---n的每个数字a[i],对于a[i]来说,能产生多少次贡献呢?。i后边的所有组合以及i前边的不是以a[i]为结尾的所有组合的乘积。现在问题转为如何维护不是以a[i]为结尾的所有组合的个数。我们定义事件A:以a[i]为结尾的组合的个数,事件B:不是以a[i]为结尾的组合的个数。 那么 B=2^(i-1)-A。我们现在可以维护A,也就间接维护了B。笔者是用map维护的,其实都无所谓的。如序列:2 1 3 1 1 1。下标从1开始。如i=5时,如果前边有a[i-1]的话,那么就不是i位置产生的贡献,而是i-1位置产生的贡献。但是i-1位置在计算该位置产生贡献的时候已经计算过了,所以不应该重复计算,其他以数字a[i]结尾的位置同理。所以应该找到前边跟a[i]不同的数结尾的组合。
 
#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int mod=1e9+7;
const int maxn=1e5+200;
INT a[maxn];
INT pow2[maxn];
map<int,INT>coun;
int main(){
int T,n;
scanf("%d",&T);
pow2[0]=1;
for(int i=1;i<=maxn-100;i++){
pow2[i]=pow2[i-1]*2%mod;
}
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%I64d",&a[i]);
}
coun.clear();
coun[0]=1;
INT ans=0;
for(int i=1;i<=n;i++){
INT pre=coun[a[i]];
INT tpre=pow2[i-1]-pre; //i-1
tpre=(tpre%mod+mod)%mod;
INT tmp=a[i]*tpre%mod*pow2[n-i]%mod;
ans=(ans+tmp)%mod;
pre=pow2[i-1]+pre;
coun[a[i]]=pre;
}
printf("%I64d\n",ans);
}
return 0;
}

  

 
 
 
 

HDU 5496——Beauty of Sequence——————【考虑局部】的更多相关文章

  1. Hdu 5496 Beauty of Sequence (组合数)

    题目链接: Hdu 5496 Beauty of Sequence 题目描述: 一个整数序列,除去连续的相同数字(保留一个)后,序列的和成为完美序列和.问:一个整数序列的所有子序列的完美序列和? 解题 ...

  2. HDU 5496 Beauty of Sequence

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5496 Beauty of Sequence Problem Description Sequence ...

  3. HDU 5783 Divide the Sequence(数列划分)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  4. hdu-5496 Beauty of Sequence(递推)

    题目链接: Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  5. 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence

    // 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...

  6. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  7. Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) (C++,Java)

    Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) Hdu 5806 题意:给出一个数组,求区间第k大的数大于等于m的区间个数 #include<queue> # ...

  8. HDU 5063 Operation the Sequence(暴力)

    HDU 5063 Operation the Sequence 题目链接 把操作存下来.因为仅仅有50个操作,所以每次把操作逆回去执行一遍,就能求出在原来的数列中的位置.输出就可以 代码: #incl ...

  9. HDU 5288 OO’s Sequence [数学]

     HDU 5288 OO’s Sequence http://acm.hdu.edu.cn/showproblem.php?pid=5288 OO has got a array A of size ...

随机推荐

  1. sql查询将列里面的值替换为别的值但是实际值不变

    数据库有一张表BUG(缺陷记录表) 里面有字段severity(严重程度): severity的值实际为1,2,3,4,但希望在查询结果中将severity的1,2,3,4值显示为其他的值,但seve ...

  2. HttpApplication 对象的创建过程及HttpModule过滤器的内部实现过程

    最近通过Reflector学习了一下asp.net内部的原理,做做笔记,方便以后查阅. 先看下HttpApplication 对象的创建过程 从IHttpHandler applicationInst ...

  3. 进击的菜鸟问题1(设置checkbox全选)

    问题:设置页面标签属性时,常常使用jquery.attr("","");在设置checkbox属性时,会出现操作设置checkbox属性后,无法清除,导致第二次 ...

  4. Angular11 模板表单、响应式表单(自定义验证器)、HTTP、表单元素双向绑定

    1 模板表单 模型通过指令隐式创建 技巧01:需要在模块级别引入 FormsModule ,通常在共享模块中引入再导出,然后在需要用到 FormsModule 的模块中导入共享模块就可以啦 impor ...

  5. Java有几种引用类型?

    有这样一类对象:当内存空间还足够,则可保留在内存中:如果内存空间在gc之后还是非常紧张,则可抛弃这些对象.很多系统的缓存功能适合这样的场景,所以jdk1.2以后 java将引用分为了强引用.软引用.弱 ...

  6. RecommenderFilterSalaryResult

    package org.andy.mymahout.recommendation.job; import java.io.BufferedReader; import java.io.File; im ...

  7. centos-6.4 yum EPEL

    初用centos,很多不习惯,记录一下. 首先装EPEL,不然默认的包少得可怜:(详见:http://www.rackspace.com/knowledge_center/article/instal ...

  8. 2、misa统计SRR结果

    参考: https://www.sogou.com/link?url=hedJjaC291NYNxVe4xgB4c3bUxXRMqZrT93cntTAgYfyBbRAdP9kIA.. https:// ...

  9. 解决Umbraco中Generated文件夹下面model问题

    在Visual Studio中开发Umbraco项目时,有一个文件夹叫Generated, 在Umbraco 的back office中的Document Type产生的model都会自动进入这个文件 ...

  10. SuperSocket使用 IRequestInfo 和 IReceiveFilter 等对象实现自定义协议

    为什么你要使用自定义协议? 通信协议用于将接收到的二进制数据转化成您的应用程序可以理解的请求. SuperSocket提供了一个内置的通信协议“命令行协议”定义每个请求都必须以回车换行"\r ...