本篇文章在具体介绍Sqoop之前,先给大家用一个流程图介绍Hadoop业务的开发流程以及Sqoop在业务当中的实际地位。 
 
如上图所示:在实际的业务当中,我们首先对原始数据集通过MapReduce进行数据清洗,然后将清洗后的数据存入到Hbase数据库中,而后通过数据仓库Hive对Hbase中的数据进行统计与分析,分析之后将分析结果存入到Hive表中,然后通过Sqoop这个工具将我们的数据挖掘结果导入到MySQL数据库中,最后通过Web将结果展示给客户。 
向大家展示完Hadoop业务开发流程之后,将进入到本篇文章的正题—-Sqoop架构以及应用的介绍。 
(一)Sqoop架构介绍 
1、Sqoop的概念 
Sqoop:SQL–to–Hadoop 
正如Sqoop的名字所示:Sqoop是一个用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。如下图所示: 
 
2、Sqoop架构 
Sqoop架构: 
 
正如上图所示:Sqoop工具接收到客户端的shell命令或者Javaapi命令后,通过Sqoop中的任务翻译器(Task Translator)将命令转换为对应的MapReduce任务,而后将关系型数据库和Hadoop中的数据进行相互转移,进而完成数据的拷贝。 
(二)Sqoop应用介绍 
Sqoop作为一个数据转移工具,必须要掌握其具体用法,下面将围绕Sqoop import to HDFS、增量导入、批脚本执行、Sqoop import to Hive、Sqoop import to Hbase、Sqoop export 几个方面进行介绍。 
1、Sqoop import to HDFS 
 
说明: 
- -connect:指定JDBC的URL 其中database指的是(Mysql或者Oracle)中的数据库名 
- -table:指的是要读取数据库database中的表名 
- -username - -password:指的是Mysql数据库中的用户名和密码 
- -target-dir:指的是HDFS中导入表的存放目录(注意:是目录) 
- -fields-terminated-by :设定导入数据后每个字段的分隔符 
-m:并发的map数量 
- -null-string:导入的字段为空时,用指定的字符进行替换 
- -incremental append:增量导入 
- -check-column:指定增量导入时的参考列 
- -last-value:上一次导入的最后一个值 
下面给大家举一个例子进行相应说明:对于Mysql数据库,将hive数据库中的consumer表通过sqoop导入到HDFS中 
 
shell命令:

sqoop import --connect     jdbc:mysql://hadoop80:3306/hive     --table  consumer                --username root --password  admin    --target-dir /outdir/  --fields-terminated-by '\t'  -m 1 
  • 1
  • 1

运行结果如下图所示: 
 
通过Sqoop这个工具就将我们Mysql数据库中的数据导入到了HDFS中,上面的shell命令类似我们下面的shell操作:

hadoop jar   copy.jar   mysql://hadoop80:3306/hive/consumer  /outdir/
  • 1
  • 1

2、增量导入 
在实际的工作当中都是数据库的表中数据不断增加的,比如刚才的consumer表,因此每次导入的时候只想导入增量的部分,不想将表中的数据在重新导入一次(费时费力),即如果表中的数据增加了内容,就向Hadoop中导入一下,如果表中的数据没有增加就不导入—–这就是增量导入。 
- -incremental append:增量导入 
- -check-column:(增量导入时需要指定增量的标准—哪一列作为增量的标准) 
- -last-value:(增量导入时必须指定参考列—–上一次导入的最后一个值,否则表中的数据又会被重新导入一次) 
以刚才的consumer表为例,我们向consumer表中增加两条记录,如下图所示: 
 
shell的增量操作:

sqoop import --connect     jdbc:mysql://hadoop80:3306/hive     --table  consumer                --username root --password  admin    --target-dir /outdir/  --fields-terminated-by '\t'  -m 1   --incremental append  --check-column  id  --last-value  4
  • 1
  • 1

增量导入的结果如下图所示: 
 
从运行结果可以看出,输出结果多了一个part-m-00001,而该文件中所包含的内容为: 
 
文件中的内容正是刚刚我们新增加的两条记录。 
3、批量导入 
从上面导入的命令可以看出,命令行包含的命令太多了,太麻烦了,因此如果类似的作业太多的话,我们应该将其设置为一个作业,做成一个脚本文件。 
创建批脚本作业的shell命令:

sqoop   job  --create   job001 --    import --connect     jdbc:mysql://hadoop80:3306/hive                       --table  consumer         --username root --password  admin    --target-dir    /outdir/                                  --fields-terminated-by '\t'  -m 1 
  • 1
  • 1

通过sqoop job –list可以查看生成的批脚本文件: 
 
通过sqoop job –exec 即可运行我们刚才生成的脚本文件,将我们Mysql数据库中的consumer表中的数据导入到HDFS中,而不需要每次都写很长的命令来运行。 
4、Sqoop import to hive 
 
说明: 
- -connect:指定JDBC的URL 其中database指的是(Mysql或者Oracle)中的数据库名 
- -table:指的是要读取数据库database中的表名 
- -username - -password:指的是Mysql数据库中的用户名和密码 
- -hive-import 指的是将数据导入到hive数据仓库中 
- -create-hive-table 创建表,注意:如果表已经存在就不用写这个命令了,否则会报错 
- -hive-table 指定databasename.tablename (哪个数据库中的哪个表) 
- -fields-terminated-by :设定导入数据后每个字段的分隔符 
-m:并发的map数量 
- -null-string:导入的字段为空时,用指定的字符进行替换 
- -incremental append:增量导入 
- -check-column:指定增量导入时的参考列 
- -last-value:上一次导入的最后一个值 
同样,下面给大家举一个例子进行相应的说明:对于Mysql数据库,将hive数据库中的consumer表通过sqoop导入到Hive数据仓库中 
 
shell命令操作:

sqoop import --connect jdbc:mysql://hadoop80:3306/hive  --table consumer     --username root --password admin --hive-import  --create-hive-table  --hive-table d1.table1                  --fields-terminated-by  '\t'  -m 1
  • 1
  • 1

运行结果如下图所示: 
 
通过Sqoop这个工具就将我们Mysql数据库中的数据导入到了Hive数据仓库中,上面的shell命令类似我们下面的shell操作:

hadoop jar copy.jar  mysql://hadoop80:3306/hive/consumer  /hive/d1.table1
  • 1
  • 1

即本质上通过sqoop这个工具完成的就是一个数据的拷贝工作。 
注:如果我们对sqoop import to hive不熟悉的话,我们可以先将数据库中的数据导入到HDFS的指定目录下,然后在Hive中创建一个外部表关联这个指定目录即可。 
5、Sqoop import to hbase 
 
说明: 
- -connect:指定JDBC的URL 其中database指的是(Mysql或者Oracle)中的数据库名 
- -table:指的是要读取数据库database中的表名 
- -username - -password:指的是Mysql数据库中的用户名和密码 
- -hbase-create-table:表示在hbase中建立表 
- -hbase-table A:指定在hbase中建立表A 
- -column-family infor:表示在表A中建立列族infor。 
- -hbase-row-key :表示表A的row-key是consumer表的id字段 
-m:并发的map数量 
- -null-string:导入的字段为空时,用指定的字符进行替换 
- -incremental append:增量导入 
- -check-column:指定增量导入时的参考列 
- -last-value:上一次导入的最后一个值 
下面给大家举一个例子进行相应的说明:对于Mysql数据库,将hive数据库中的consumer表通过sqoop导入到Hbase中: 
 
shell命令:

 sqoop import --connect jdbc:mysql://hadoop80:3306/hive  --table consumer    --username root --password admin    --hbase-create-table     --hbase-table A      --column-family infor                      --hbase-row-key id --fields-terminated-by '\t'  -m 1
  • 1
  • 1

运行结果如下: 
 
通过Sqoop这个工具就将我们Mysql数据库中的数据导入到了Hbase中,上面的shell命令类似我们下面的shell操作:

hadoop jar copy.jar  mysql://hadoop80:3306/hive/consumer  /hbase/A
  • 1
  • 1

5、Sqoop export 
 
下面给大家举一个例子进行相应的说明:假设将HDFS中的t1表通过sqoop导入到Mysql中的consumer表(事先必须存在): 
HDFS中t1表的内容: 
 
MySql中已经创建好的consumer表: 
 
shell命令如下:

 sqoop export --connect jdbc:mysql://hadoop80:3306/hive  --table consumer   --username  root --password admin  --export-dir  /outdir/  --fields-terminated-by '\t'  -m 1
  • 1
  • 1

运行结果,数据从HDFS的t1文件中成功的导入到了Mysql中的consumer表中: 
 
注:从Hadoop向数据库中导入数据时,数据库中相应的表事先必须创建好。 
(三)总结 
Sqoop作为一个用来将关系型数据库和Hadoop中的数据进行相互转移的工具,对于我们来说更重要的在于灵活的运用这个工具。

Sqoop架构以及应用介绍的更多相关文章

  1. Sqoop架构

    Sqoop 架构 Sqoop 架构是非常简单的,它主要由三个部分组成:Sqoop client.HDFS/HBase/Hive.Database.下面我们来看一下 Sqoop 的架构图. 用户向 Sq ...

  2. Sqoop架构(四)

    Sqoop 架构是非常简单的,它主要由三个部分组成:Sqoop client.HDFS/HBase/Hive.Database. 下面是Sqoop 的架构图 (1)用户向 Sqoop 发起一个命令之后 ...

  3. 深入浅出node.js游戏服务器开发1——基础架构与框架介绍

    2013年04月19日 14:09:37 MJiao 阅读数:4614   深入浅出node.js游戏服务器开发1——基础架构与框架介绍   游戏服务器概述 没开发过游戏的人会觉得游戏服务器是很神秘的 ...

  4. scrapy架构与目录介绍、scrapy解析数据、配置相关、全站爬取cnblogs数据、存储数据、爬虫中间件、加代理、加header、集成selenium

    今日内容概要 scrapy架构和目录介绍 scrapy解析数据 setting中相关配置 全站爬取cnblgos文章 存储数据 爬虫中间件和下载中间件 加代理,加header,集成selenium 内 ...

  5. HBase的基本架构及其原理介绍

    1.概述:最近,有一些工程师问我有关HBase的基本架构的问题,其实这个问题仅仅说架构是非常简单,但是需要理解.在这里,我觉得可以用HDFS的架构作为借鉴.(其实像Hadoop生态系统中的大部分组建的 ...

  6. iOS开发:iOS的整体架构以及API介绍

    iOS的整体架构分为4层——Cocoa Touch层.Media层.Core Services层和Core OS层,下面概要介绍一下这4层. Cocoa Touch:构建iOS应用的一些基本系统服务, ...

  7. Openstack Swift 原理、架构与 API 介绍

    OpenStack Swift 开源项目提供了弹性可伸缩.高可用的分布式对象存储服务,适合存储大规模非结构化数据.本文将深入介绍 Swift 的基本设计原理.对称式的系统架构和 RESTful API ...

  8. Flume架构以及应用介绍[转]

    在具体介绍本文内容之前,先给大家看一下Hadoop业务的整体开发流程: 从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引出 ...

  9. Flume架构以及应用介绍

    在具体介绍本文内容之前,先给大家看一下Hadoop业务的整体开发流程:  从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引 ...

随机推荐

  1. 公网通过代理访问阿里云vpc redis

    前提条件 如果您需要从本地 PC 端访问 Redis 实例进行数据操作,可以通过在 ECS 上配置端口映射或者端口转发实现.但必须符合以下前提条件: 若 Redis 实例属于专有网络(VPC),ECS ...

  2. 代码设置UIButton文字、图片位置

    假设有按钮rButton的 imageEdgeInsets和contentEdgeInsets可以设置按钮的标题和图片的位置,如下代码,设置标题居右 NSString * rBtnTitle = @& ...

  3. js获取url传递参数值

    function request(paras)     {          var url = location.href;          var paraString = url.substr ...

  4. C# 接口的隐式与显示实现说明

    以前在用到接口时,从来没注意到接口分为隐式实现与显示实现.昨天在浏览博客时看到相关内容,现在根据自己的理解记录一下,方便日后碰到的时候温习温习. 通俗的来讲,"显示接口实现"就是使 ...

  5. notepad 替换行收尾字符串或在行首尾新增字符

    用 Notepad++ 打开,把每一个将要放在表中单元格的内容放一行(注: ^ 代表行首 $ 代表行尾) 去除行尾空格和空白行:按CTRL+H 选择正则表达式-- 查找目标:\s+$ 替换为空 去除行 ...

  6. JLink defective

    下载了最新的JLink V622g,打开JLink命令行后,提示以下信息 The connected J-Link is defective,Proper operation cannot be gu ...

  7. CIA 读书笔记

    对此书的评价只有八个字:粗制滥造,到处粘贴. 对于通过表情识别人情绪的教程,最好要有图,图很重要,也最好有案例.

  8. yaffs2在am335x上实施

    一.yaffs2文件烧写(通过网口) uboot下输入如下命令: setenv ipaddr 192.168.2.110;setenv serverip 192.168.2.222;saveenv n ...

  9. git学习之时光机穿梭(四)

    时光机穿梭 我们已经成功地添加并提交了一个readme.txt文件,现在,是时候继续工作了,于是,我们继续修改readme.txt文件,改成如下内容: Git is a distributed ver ...

  10. 为什么Goroutine能有上百万个,Java线程却只能有上千个?

      作者|Russell Cohen   译者|张卫滨   本文通过 Java 和 Golang 在底层原理上的差异,分析了 Java 为什么只能创建数千个线程,而 Golang 可以有数百万的 Go ...