传送门


这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发……

首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z]\)。正确性证明考虑:对于质数\(p\),设\(i,j,k\)中质因子\(p\)的个数为\(a,b,c\)。在\(x,y,z\)中至多只能有\(1\)个数含质因子\(p\),有以下情况:\(x,y,z\)中都没有\(p\),有1种;\(x\)中有\(p\),有\(a\)种;\(y\)中有\(p\),有\(b\)种;\(z\)中有\(p\),有\(c\)种。那么在\(\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z]\)中\(p\)的贡献为\(a+b+c+1\),而在\(d(ijk)\)中\(p\)的贡献也是\(a+b+c+1\),所以两者等价。

设\(A \leq B \leq C\),\(\frac{x}{y}\)默认下取整。用上述结论化简式子:

\(\begin{align*} \sum\limits_{i=1}^A \sum\limits_{j=1}^B \sum\limits_{k=1}^C d(ijk) & = \sum\limits_{i=1}^A \sum\limits_{j=1}^B \sum\limits_{k=1}^C \sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{z|k}[x \perp y][y \perp z][x \perp z] \\ & = \sum\limits_{x = 1}^C \sum\limits_{y=1}^C \sum\limits_{z=1}^C[x \perp y][y \perp z][x \perp z] \frac{A}{x} \frac{B}{y} \frac{C}{z} \\ &= \sum\limits_{x = 1}^C \frac{A}{x} \sum\limits_{y=1}^C \frac{B}{y} \sum\limits_{z=1}^C \frac{C}{z} \sum\limits_{p | x , p | y} \mu(p) \sum\limits_{q | x , q | z} \mu(q) \sum\limits_{r | y , r | z} \mu(r) \\ &= \sum\limits_{p=1}^C \mu(p) \sum\limits_{q=1}^C \mu(q) \sum\limits_{r=1}^C \mu(r) \sum\limits_{p | x , q | x}\frac{A}{x} \sum\limits_{p | y , r | y} \frac{B}{y} \sum\limits_{q | z , r | z} \frac{C}{z} \end{align*}\)

\(\sum\limits_{p | x , q | x}\frac{A}{x} = \sum\limits_{lcm(p,q) | x}\frac{A}{x}\),这个可以枚举倍数\(O(nlogn)\)地预处理。所以我们现在需要一种快速的方法枚举\(pqr\)三个量。

不难发现一对\(p,q\)满足条件当且仅当\(\mu(p) \neq 0 , \mu(q) \neq 0 , lcm(p,q) \leq C\)。写一个\((10^5)^2\)的暴力发现好像只有……\(760741\)对满足条件!

那么实际上有用的\(p,q\)不多。不妨构出一个图,对于满足\(\mu(p) \neq 0 , \mu(q) \neq 0 , lcm(p,q) \leq C\)的\(p\)和\(q\)连边\((p,q)\),权值为\(lcm(p,q)\),那么在上述的枚举中\(p \neq q \neq r\)的三元组\((p,q,r)\)在图上对应一个三元环,并且能够轻松地通过这个三元环三条边的权值得到这个三元组的贡献。我们直接三元环计数统计这样的三元环的答案,因为图显然不是构造的所以跑不满根号。

因为打表是不现实的,所以我们还要解决如何快速算出满足\(\mu(p) \neq 0 , \mu(q) \neq 0 , lcm(p,q) \leq C\)的\(p\)和\(q\)。考虑枚举\(gcd(p,q)\),然后枚举\(p\)和\(q\),当\(lcm(p,q) > C\)时退出,枚举的时候check一下\(\mu(p) , \mu(q) , gcd(p,q)\)是否满足条件。这样的复杂度是\(O(Clog^2C)\)的。

上面三元环计算出了\(p \neq q \neq r\)的贡献,\(p=q=r\)的贡献直接枚举一遍,\(p = q \neq r\)的情况在枚举图上的边的时候可以一并计算。然后这道题就做完了。

据说这道题很卡常,所以注意一些细节:1、这道题中间变量用long long存的下,可以避免大量取模;2、存边用vector而不是前向星可以通过内存连续访问争取到更优秀的常数;3、必要的时候可以循环展开。

代码

LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数的更多相关文章

  1. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  2. BZOJ5332: [Sdoi2018]旧试题(莫比乌斯反演)

    时光匆匆,转眼间又是一年寒暑…… 这是小 Q 同学第二次参加省队选拔赛. 今年,小 Q 痛定思痛,不再冒险偷取试题,而是通过练习旧 试题提升个人实力.可是旧试题太多了,小 Q 没日没夜地做题,却看不到 ...

  3. loj#2565. 「SDOI2018」旧试题(反演 三元环计数)

    题意 题目链接 Sol 神仙反演题.在洛谷上疯狂被卡常 Orz shadowice #include<bits/stdc++.h> #define Pair pair<int, in ...

  4. 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)

    [BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...

  5. [SDOI2018] 旧试题

    推狮子的部分 \[ \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sigma(ijk) =\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_ ...

  6. P4619 [SDOI2018]旧试题

    题目 P4619 [SDOI2018]旧试题 Ps:山东的题目可真(du)好(liu),思维+码量的神仙题 推式 求\(\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^Cd(ij ...

  7. Codechef SUMCUBE Sum of Cubes 组合、三元环计数

    传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...

  8. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  9. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

随机推荐

  1. 问题:oracle触发器无效且未通过重新验证;结果:触发器里面没有加分号(;)

    oracle无效且未通过重新验证 代码如下: SQL code如下: --创建中国地图表 create table  china_address (        id number not null ...

  2. oracle错误-ORA-12519, TNS:no appropriate service handler found

    转自:https://blog.csdn.net/u013147600/article/details/48380841

  3. kvm iptables 3306端口

    # iptables -t nat -A PREROUTING -p TCP --dport 3306 -j DNAT --to-destination 192.168.122.102:3306# i ...

  4. 部署和调优 1.1 nfs部署和优化-1

    NFS服务会经常用到,用于在网络上共享存储.举一个例子来说明一下 NFS .假如有三台机器 A.B.C,它们需要访问同一个目录,目录中都是图片,传统的做法是把这些图片分别放到 A.B.C.但是,若使用 ...

  5. oracle常用函数总结(一)

    最近在读数据库存储过程,或者在xml里写sql时用到数据库函数,笔者觉得有必要总结一下,当然有的函数笔者也很懵逼,不过可以问度娘啊!好了!开始正题. )s from dual;--1 若nvl第一个参 ...

  6. 【Android 多媒体应用】使用 VideoView 播放视频

    1.MainActivity.java import android.os.Bundle; import android.support.v7.app.AppCompatActivity; impor ...

  7. 用JS,打印三角形

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  8. Python单例模式剖析

    在聊这之前我们首先要明确的是,单例模式在实际中的意义以及在python中具有实现的价值? 当前,相信有很多人支持单例模式,也有不少人反对,尤其是在python中,目前依旧具有很大的争议性.我们要在评论 ...

  9. sql中IN的用法

    1.和where配合使用 IN操作符允许我们在where的子句中规定多个值 SELECT * FROM Persons  WHERE LastName IN ('Adams','Carter') 这句 ...

  10. show table detail

    create table #t(name varchar(255), rows bigint, reserved varchar(20),data varchar(20), index_size va ...