转载地址:http://www.jianshu.com/p/9061b6d0a901

1. 概述

对于共享网络资源的各类应用来说,拥塞控制技术的使用有利于提高带宽利用率,同时也使得终端用户在使用网络时能够获得更好的体验。在协议层面上拥塞控制是TCP的一个总要的组成部分;但是对于非面向链接的传输层协议,如UDP,其在协议层面上并没有对拥塞控制进行强制性的要求,这样做保证了最优的传输性能,且在拥塞控制的设计上也保留了更大的灵活性。

WebRTC为我们提供了强大的音视频媒体引擎,前端开发者可以通过调用几个简单的js接口就能实现基于Web浏览器的实时音视频通信。而在媒体数据传输上,WebRTC采用了实时性较强UDP协议,并使用了RTP/RTCP技术。本文的主要内容就是介绍WebRTC中基于RTP/RTCP实现的拥塞控制技术。


2. 拥塞控制算法

WebRTC采用了两种拥塞控制算法:(1)基于延迟(delay-based)的拥塞控制算法;(2)基于丢包(loss-based)的拥塞控制算法。算法(1)由数据的接收方实现,接收方需要记录每个数据包到达的时间和大小,并计算每个数据分组之间(inter-group)的延迟的变化,由此判断当前网络的拥塞情况,并最终输出码率估计值由RTCP feedback(TMMBR或 REMB)反馈给发送方;算法(2)则由数据的发送方来实现,发送方通过从接收方周期性发来的RTCP RR(Receiver Report)中获取丢包信息以及计算RTT,并结合TMMBR或REMB中携带的码率信息算得最终的码率值,然后由媒体引擎根据码率来配置编码器,从而实现码率的自适应调整。从上面的描述可以看出,这两个算法在系统中并不是孤立存在的。

拥塞控制算法时序图.png

2.1 基于延迟(delay-based)的拥塞控制算法

基于延迟的拥塞控制算法可以分成以下4个部分:(1)到达时间模型(arrive-time model);(2)预过滤(Pre-filtering);(3)到达时间滤波器(arrive-time filter);(4)过载检测器(over-use detector)。

基于延迟的拥塞控制算法.png

2.1.1 到达时间模型(arrive-time model)

设相邻两个数据分组到达接收方的时间间隔为t(i) - t(i-1),而两者被发送的时间间隔则为T(i) - T(i-1),那么就有延迟变量d(i)=t(i)-t(i-1) - (T(i)-T(i-1))。如果d(i) > 0,就说明数据在网络传输时存在延迟的现象。

在WebRTC中延迟变量d(i) = w(i)被视为随机过程W中一个采样点,并且是链路承载能力、网络当前传输状况以及当前发送速率等因素综合作用的结果。该随机过程W符合正态分布。当网络发生过载(over-use)时,我们期望w(i)会上升;当网络空闲(Under-use)时,则期望w(i)会下降。

测量方程进一步改写为 d(i) = m(i) + v(i),其中m(i)符合均值为0的正态分布(标准正态分布),v(i)表示为网络抖动等因素带来的对数据延迟的影响。

2.1.2 预过滤(Pre-filtering)

预过滤的目的是处理由于通道中断造成的延迟瞬间变大的情况。在通道发生中断时,数据包会持续进入网络队列中,而当通道恢复时,所有的数据包会在一个burst时间(5 ms)里面全部发送,而这些数据包可能原先包分布于多个数据分组。而预过滤所要做的就是将这些在同一个burst时间里发送的数据包合为一个数据分组。

这里涉及到了WebRTC中关于数据传输的一个设计--PacedSender。Encoded数据完成RTP封装之后先是被保存在本地应用的队列中,而不是直接发送到网络。此时可以将PacedSender视为一个数据发送的节拍器,它每隔一个burst时间启动一次,启动之后会将队列中的RTP包全数发出。

数据包会在下面两种情况下被划分到一个数据分组:

  • 在同一个burst时间区间内被发送的数据包序列;
  • 一个数据包与相邻数据包的到达时间间隔小于一个burst时间,同时d(i) < 0,那么这个数据包将会被划到当前的分组中。

2.1.3 到达时间滤波器(arrive-time filter)

在此系统希望通过预测m(i)来检测当前的网络是否过载;而这里所采用的预测方法是卡尔曼滤波(Kalman filter)。
状态方程:m(i+1) = m(i) + u(i), 其中u(i)表示为状态噪声,符合0均值正态分布。
测量方程:d(i) = m(i) + v(i), 其中v(i)表示为测量噪声,符合0均值正态分布。
卡尔曼滤波器根据“5组公式”来迭代更新m(i) 的估计值m_hat(i),该估计值m_hat(i)则是下文过载检测器的检测依据。关于卡尔曼滤波器如何实现预测的详细介绍在这里就不做展开了,可参考文献[3]。

2.1.4 过载检测器(over-use detector)

通过Kalman 滤波器能够获得延迟变量m(i)的估计值,而过载检测器的工作原理其实就是通过m(i)与阈值del_var_th进行比较来对当前的网络拥塞状况进行检测。如果m(i) > del_var_th且m(i) > m(i-1),同时该状态至少持续了overuse_time_th毫秒,则判断为网络过载(Over-use);如果m(i) < -del_var_th,则判断为网络空闲(Under-use);剩余的情况都被判断为Normal状态。

由此可见,阈值del_var_th的设计对于整个算法的性能来说至关重要。如果del_var_th的值设得过大,那么整个算法的动态就会显得过于平滑,此时只有在数据分组严重delay时检测器才会触发over-use的信号;相反的,如果del_var_th的值设得过小,那么检测器就会对delay非常敏感,从而导致频繁触发over-use信号。因此,WebRTC提出了针对阈值del_var_th的动态调整算法:

del_vat_th(i) = del_var_th(i-1)+ (t(i) - t(i-1)) * K(i) * (|m(i)| - del_var_th(i-1))

其中,当|m(i)| < del_var_th(i-1)时K(i)=K_d;否则,K(i)=K_u。

在WebRTC中本小节所涉及的各参数的参考值如下:
del_var_th(0) = 12.5 ms, overuse_time_th = 10 ms, K_u=0.01, K_d=0.00018

2.1.5 速率控制(rate control)

速率控制子系统根据当前网络的拥塞情况(由过载检测器提供),计算带宽估计值并请求发送方对速率进行调整。该子系统通过有限状态机对速率进行自适应调整。其状态迁移如下图所示:

速率控制状态机.png
  • 状态 Increase: 表明当前没有检测到网络拥塞,在此状态下传输速率需要逐步增加;它先是通过乘性增加来调整速率(乘性因子为1.08),当速率接近临界值时再通过加性增加逐步收敛,而这里所谓的临界值是指上一次在状态Decrease 时统计的下行码率;
  • 状态 Decrease: 表明当前检测到了网络拥塞,在此状态下传输速率需要逐步下降;在这里,WebRTC所采用的方法是乘性下降,其乘性因子为0.85;
  • 状态 Hold: 表明保持当前的速率不做改变。

速率控制子系统最终会输出一个带宽估计值A_hat,并通过RTCP Feedback(TMMBR/REMB)请求发送方进行速率调整。

2.2 基于丢包(Loss-based)的拥塞控制算法

基于丢包的拥塞控制是通过对丢包率,RTT和带宽估计值A_hat这三个参数进行决策而实现的。其中带宽估计值A_hat正是由上节中的速率控制子系统所提供。

基于丢包的拥塞控制在每次收到对方发送RTCP之后都会运行:

  • 当丢包率保持在[2%, 10%]时,当前数据发送方的带宽估计值As_hat保持不变;
  • 当丢包率大于10%时,带宽估计值将会降低:As_hat(i) = As(i-1)*(1-p),其中p为丢包率;
  • 当丢包率小于2%时,带宽估计值将会上升:As_hat(i) = As(i-1)*1.05。

As_hat更新之后将与A_hat进行比较,然后取两者中的较小值作为最终的带带宽估计值。

其实在原生的代码中,系统还会将丢包率和RTT作为参数,通过TFRC [RFC 5348]的吞吐率计算公式对当前的带宽进行估计,而最终的估计值则是取三者中的最小值。


3. 后语

通过上文的介绍,我们知道WebRTC中的拥塞控制算法还是非常完备的。其分别针对数据包的延迟和丢包设计了delay-based和loss-based拥塞控制算法,在两者的共同作用之下,WebRTC能够满足大部分场景下的实时视频通话业务。但是,如果有要对WebRTC中的媒体引擎进行移植的朋友,首先要分析一下WebRTC的拥塞控制算法是否满足你的业务需求:如果是开发独立应用,由于业务闭环,直接使用现有的算法应该问题不大;但是,如果是用于开发提供类似VoLTE/VoWIFI这样的运营商增值服务的应用,需要依据运营商的技术手册和3GGP协议等来对拥塞控制算法进行适配。

Reference
[1] A Google Congestion Control Algorithm for Real-Time Communication draft-ietf-rmcat-gcc-02
[2] RFC 5348
[3] http://blog.csdn.net/xiahouzuoxin/article/details/39582483
[4] 3GPP TS 26.114

WebRTC的拥塞控制技术<转>的更多相关文章

  1. 小议WebRTC拥塞控制算法:GCC介绍

    网络拥塞是基于IP协议的数据报交换网络中常见的一种网络传输问题,它对网络传输的质量有严重的影响,网络拥塞是导致网络吞吐降低,网络丢包等的主要原因之一,这些问题使得上层应用无法有效的利用网络带宽获得高质 ...

  2. webrtc系列文章

    WEBRTC RTP/RTCP协议族 2017-02-22 20:15 阅读(144) 评论(0) WebRTC 基于GCC的拥塞控制(下) 2017-02-22 15:44 阅读(108) 评论(0 ...

  3. 实时视频应用之QoS关键技术分析

    转自:http://www.aiweibang.com/m/detail/104476372.html?from=p 随着WebRTC标准的逐步推广,实时音视频通讯技术受到越来越多公司和技术人员的关注 ...

  4. 浅析——SCTP协议(转)

    SCTP处于SCTP用户应用层与IP网络层之间,它运用“关联”(association)这个术语定义交换信息的两个对等SCTP用户间的协议状态 .SCTP也是面向连接的,但在概念上,SCTP“关联”比 ...

  5. TCP/IP 笔记 - TCP拥塞控制

    拥塞控制是TCP通信的每一方需要执行的一系列行为,这些行为有特定算法规定,用于防止网络因为大规模的通信负载而瘫痪.其基本方法是当有理由认为网络即将进入拥塞状态(或已由于拥塞而出现路由丢包情况)时减缓T ...

  6. TCP协议如何保证可靠传输?

    一.TCP的可靠传输如何保证? 在TCP连接中,数据流必须以正确的顺序传送给对方.TCP的可靠性是通过顺序编号和确认(ACK)实现的.TCP在开始传送一个段时,为准备重传而首先将该段插入到发送队列中, ...

  7. NVIDIA DGX SUPERPOD 企业解决方案

    NVIDIA DGX SUPERPOD 企业解决方案 实现大规模 AI 创新的捷径 NVIDIA DGX SuperPOD 企业解决方案是业界首个支持任何组织大规模实施 AI 的基础架构解决方案.这一 ...

  8. TCP 重传、滑动窗⼝、流量控制、拥塞控制

    重传机制 TCP 会在以下两种情况发⽣超时重传: 数据包丢失 确认应答丢失 重传超时 重传超时是TCP协议保证数据可靠性的另一个重要机制,其原理是在发送某一个数据以后就开启一个计时器,在一定时间内如果 ...

  9. WebRTC基于GCC的拥塞控制算法[转载]

    实时流媒体应用的最大特点是实时性,而延迟是实时性的最大敌人.从媒体收发端来讲,媒体数据的处理速度是造成延迟的重要原因:而从传输角度来讲,网络拥塞则是造成延迟的最主要原因.网络拥塞可能造成数据包丢失,也 ...

随机推荐

  1. Use default arguments instead of short circuiting or conditionals使用默认实参代替短路和条件

  2. Angular表单的本地校验和远程校验

    AngularJS Form 进阶:远程校验和自定义输入项 表单远程校验 HTML代码: <!doctype html> <html ng-app="form-exampl ...

  3. Linux开放端口

    开放端口8081 -A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 8081 -j ACCEPT 重启端口服务 ser ...

  4. 程序员怎样迈出从5K到1W的重要一步

    为什么一个相似的功能,大牛一会儿就搞定,然后悠闲地品着下午茶逛淘宝:而自己加班加点搞到天亮还做不完. 为什么用户提出需求变更后,大牛只需潇洒地敲敲键盘,改改配置:而自己将代码改了又改,删了又建,几乎晕 ...

  5. 一些蠕虫传播研究的文章——TODO

    www.arocmag.com/getarticle/?aid=4e02d91c19b0cced Internet 蠕虫防范技术研究http://www.arocmag.com/article/100 ...

  6. Eclipse插件开发_学习_02_GEF入门实例

    一.前言 这一节,我们将会创建一个GEF入门实例 二.新建RCP项目 1. New 一个 Plug-in Project 2.输入项目名 项目名:com.ray.gef.helloworld 3.Co ...

  7. 201621123014《Java程序设计》第十周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...

  8. const指针和指向const的指针

    int *const p=&a; 这是const指针,这种指针必须在定义时就给出它所指向的地址,否则会error:uninitialized const 'p'.const指针的指针本身是co ...

  9. Aixs2发布webservice服务

    http://www.blogjava.net/pzxsheng/archive/2012/12/21/393319.html 开发前准备:    1.Eclipse Java EE IDE(Juno ...

  10. 转载:java电商面试介绍(不完整版)

    转载: http://blog.csdn.net/xue_mind/article/details/52959107