【POJ 2976 Dropping tests】
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 13849
Accepted: 4851
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0
Sample Output
83
100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
【翻译】给出n个物品,每个物品有两个值a和b,选择n-k个元素,询问的最大值。
题解:
①题目要求求出Sigma式子的最大值,可以考虑单个式子ai/bi的最大值,然后将它们合起来。
②但是直接计算是不方便转化的,因为Sigma和单个式子还是有区别的。
③由于具有取值上的单调性,因此考虑二分,二分最大值x,那么则有:
∑ai/∑bi>=x 移项得到: ∑ai>=x*∑bi ——> ∑ai-x*∑bi>=0
④所以就二分啊,使得x不断变大,大到使得∑ai-x*∑bi几乎等于0,就是最有解了。
#include<stdio.h>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define ro(i,a,b) for(int i=a;i>=b;i--)
int n,k,a[4001],b[4001];
double T[4001],res,l,r,M;
bool check(double x)
{
go(i,1,n)T[i]=a[i]-x*b[i];std::sort(T+1,T+1+n);res=0;
go(i,k+1,n)res+=T[i];return res>=0;
}
int main()
{
while(scanf("%d%d",&n,&k),n|k)
{
go(i,1,n)scanf("%d",a+i);l=0;
go(i,1,n)scanf("%d",b+i);r=1;
while(r-l>1e-6)M=(l+r)/2,check(M)?l=M:r=M;printf("%.0f\n",l*100);
}
}//Paul_Gudeiran
希望你把我记住你流浪的孩子,无论在何时何地我都想念着你。————汪峰《我爱你中国》
【POJ 2976 Dropping tests】的更多相关文章
- POJ - 2976 Dropping tests && 0/1 分数规划
POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...
- 二分算法的应用——最大化平均值 POJ 2976 Dropping tests
最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...
- POJ 2976 Dropping tests 【01分数规划+二分】
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- POJ 2976 Dropping tests(01分数规划入门)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11367 Accepted: 3962 D ...
- POJ 2976 Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions:17069 Accepted: 5925 De ...
- POJ 2976 Dropping tests (0/1分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4654 Accepted: 1587 De ...
- Poj 2976 Dropping tests(01分数规划 牛顿迭代)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...
- poj 2976 Dropping tests 二分搜索+精度处理
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8349 Accepted: 2919 De ...
随机推荐
- mysql 命令 小结
CREATE DATABASE IF NOT EXISTS yourdbname DEFAULT CHARSET utf8 COLLATE utf8_general_ci;创建中文数据库show gl ...
- LeetCode207 课程表
问题:课程表 现在你总共有 n 门课需要选,记为 0 到 n-1. 在选修某些课程之前需要一些先修课程. 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1] 给定 ...
- 解决方法:SQL Server 检测到基于一致性的逻辑 I/O 错误 校验和不正(转载)
引用:http://luowei1371984.blog.163.com/blog/static/44041589201491844323885/ SQL2008运行select count(*) f ...
- 为什么 redis 单线程却能支撑高并发
redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理 ...
- JZOJ 3534. 【NOIP2013提高组day1】货车运输
Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的 ...
- yii2 的登录注册 轮子
//利用到了yii2 框架之中的验证规则 进行判定而已 也不是很高深的东西 但是 使用框架自身的轮子 会有安全性能的隐患 1注册reg controller 中 我都以admin 为例子 publi ...
- manjaro安装teamviewer实现远程连接
不要安装库里面的这两个版本,安装后桌面快捷方式和命令行运行都正常显示窗口,但没有teamviewer ID和随机密码 12.x版本也不用下载尝试了 ➜ ~ teamviewer Init...Chec ...
- 霍夫圆检测 opencv
进行霍夫圆变换中有一个API:HoughCircles(). 第五个参数为double类型的minDist(),为霍夫变换检测到的圆的圆心之间的最小距离,即让算法能明显区分的两个不同圆之间的最小距离. ...
- 笔记-scrapy-setting
笔记-scrapy-setting 1. 简介 Scrapy设置允许您自定义所有Scrapy组件的行为,包括核心,扩展,管道和蜘蛛本身. 可以使用不同的机制来填充设置,每种机制都有不同的优先级 ...
- HTTP的缓存控制
1.缓存的分类: (1)缓存分为服务端侧(server side,比如 Nginx.Apache)和客户端侧(client side,比如 web browser). (2)服务端缓存又分为 代理服务 ...