题意

题目链接

Sol

直接在线段树上二分

当左右儿子中的一个不是\(x\)的倍数就继续递归

由于最多递归到一个叶子节点,所以复杂度是对的

开始时在纠结如果一段区间全是\(x\)的两倍是不是需要特判,实际上是不需要的。

可以这么想,如果能成功的话,我们可以把那个数改成\(1\),这样比\(x\)大的数就不会对答案产生影响了。

不过我的线段树为啥要开6倍空间才能过。。真是狗血、、

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 3e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-')f =- 1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a[MAXN];
#define ls k << 1
#define rs k << 1 | 1
struct Node {
int l, r, g;
}T[MAXN];
int gcd(int a, int b) {
return (b == 0 ? a : gcd(b, a % b));
}
void update(int k) {
T[k].g = gcd(T[ls].g, T[rs].g);
}
void Build(int k, int ll, int rr) {
T[k] = (Node) {ll, rr};
if(ll == rr) {T[k].g = a[ll]; return ;}
int mid = T[k].l + T[k].r >> 1;
Build(ls, ll, mid); Build(rs, mid + 1, rr);
update(k);
}
void PointChange(int k, int pos, int val) {
if(T[k].l == T[k].r) {T[k].g = val; return ;}
int mid = T[k].l + T[k].r >> 1;
if(pos <= mid) PointChange(ls, pos, val);
else PointChange(rs, pos, val);
update(k);
}
int sum = 0;
void IntervalTims(int k, int ll, int rr, int val) {
if(sum > 1) return ;
if(T[k].l == T[k].r) sum++;
int mid = T[k].l + T[k].r >> 1;
if(ll <= mid && (T[ls].g % val)) IntervalTims(ls, ll, rr, val);
if(rr > mid && (T[rs].g % val)) IntervalTims(rs, ll, rr, val);
}
main() {
N = read();
for(int i = 1; i <= N; i++) a[i] = read();
Build(1, 1, N);
M = read();
while(M--) {
int opt = read();
if(opt == 1) {
int l = read(), r = read(), x = read();
sum = 0; IntervalTims(1, l, r, x);
puts(sum > 1 ? "NO" : "YES");
} else {
int pos = read(), x = read();
PointChange(1, pos, x);
}
}
}
/*
*/

cf914D. Bash and a Tough Math Puzzle(线段树)的更多相关文章

  1. CF914D Bash and a Tough Math Puzzle 线段树+gcd??奇怪而精妙

    嗯~~,好题... 用线段树维护区间gcd,按如下法则递归:(记题目中猜测的那个数为x,改动次数为tot) 1.若子区间的gcd是x的倍数,不递归: 2.若子区间的gcd是x的倍数,且没有递归到叶子结 ...

  2. Codeforces 914D - Bash and a Tough Math Puzzle 线段树,区间GCD

    题意: 两个操作, 单点修改 询问一段区间是否能在至多一次修改后,使得区间$GCD$等于$X$ 题解: 正确思路; 线段树维护区间$GCD$,查询$GCD$的时候记录一共访问了多少个$GCD$不被X整 ...

  3. Codeforces.914D.Bash and a Tough Math Puzzle(线段树)

    题目链接 \(Description\) 给定一个序列,两种操作:一是修改一个点的值:二是给一个区间\([l,r]\),问能否只修改一个数使得区间gcd为\(x\). \(Solution\) 想到能 ...

  4. CodeForces 914DBash and a Tough Math Puzzle(线段树的骚操作)

    D. Bash and a Tough Math Puzzle time limit per test 2.5 seconds memory limit per test 256 megabytes ...

  5. [CF914D]Bash and a Tough Math Puzzle

    给定一个数列$a_1,a_2,...,a_n$,支持两种操作 1 l r x,猜测数列中[l,r]位置上的数的最大公约数$x$,判断这个猜测是否是接近正确的.如果我们可以在数列[l,r]位置中改动至多 ...

  6. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  7. CF 914 D. Bash and a Tough Math Puzzle

    D. Bash and a Tough Math Puzzle http://codeforces.com/contest/914/problem/D 题意: 单点修改,每次询问一段l~r区间能否去掉 ...

  8. D. Bash and a Tough Math Puzzle 解析(線段樹、數論)

    Codeforce 914 D. Bash and a Tough Math Puzzle 解析(線段樹.數論) 今天我們來看看CF914D 題目連結 題目 給你一個長度為\(n\)的數列\(a\), ...

  9. 2018.12.08 codeforces 914D. Bash and a Tough Math Puzzle(线段树)

    传送门 线段树辣鸡题. 题意简述:给出一个序列,支持修改其中一个数,以及在允许自行修改某个数的情况下询问区间[l,r][l,r][l,r]的gcdgcdgcd是否可能等于一个给定的数. 看完题就感觉是 ...

随机推荐

  1. sql开发技巧总结-1

    1.数据库分类 关系型 非关系型 2.sql语句分类 sql: ddl数据库定义语言  tpl事物处理语言 dcl数据控制语言  dml数据操作语言(insert delete update sele ...

  2. jmeter - 录制web网页

    1.       打开JMeter工具 创建一个线程组(右键点击“测试计划”--->“添加”---->“线程组”) 创建一个http代理服务器(右键点击“工作台”--->“添加”-- ...

  3. P1505 [国家集训队]旅游

    \(\color{#0066ff}{题 目 描 述}\) Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了 ...

  4. CF431D Random Task 二分+数位dp

    One day, after a difficult lecture a diligent student Sasha saw a graffitied desk in the classroom. ...

  5. 百度地图sdk使用

    1.android开发百度地图定位,我怎么老是定到几内亚湾 权限问题,首先安卓6.0之后的Android的系统需要动态申请权限. 然后百度地图的sdk的不同功能,申请的权限不同,每个功能都需要看官方文 ...

  6. zabbix监控nginx进程

    确认nginx有没有安装模块 然后在主站点下添加(二级站点) location /NginxStatus { stub_status on; access_log off; allow 127.0.0 ...

  7. VisualSVN的安装使用

    1.什么是VisualSVN VisualSVN Server是集成了Subversion和Apache的一种版本管理工具,它简化了手工配置Subversion的繁琐步骤,安装的时候SVN Serve ...

  8. P4173 残缺的字符串(FFT)

    [Luogu4173] 题解 \(1.\)定义匹配函数 \(2.\)定义完全匹配函数 \(3.\)快速计算每一位的完全匹配函数值 #include<cstdio> #include< ...

  9. 求用1g、2g、3g的砝码(每种砝码有无穷多个)称出10g的方案有几种

    #include <iostream> using namespace std; // ; // sup是保存多项式的数组,sup[n]中的值代表指数为i的系数 ,下标i是x的指数 // ...

  10. day14 面向对象

    . 面向对象和面向过程 .面向过程:核心是过程,是流水线 优缺点: .流程化,编写简单 .可扩展性差 .面向对象:核心是对象(对象:具有相同属性和动作的结合体) 优缺点: .可扩展行强 .复杂度高于面 ...