SRM 441(1-250pt, 1-500pt)
DIV1 250pt
题意:用数组A表示置换,由该置换得到数组B(B[0] = 0, B[i] = A[B[i-1]])。给定A,求一个A',使得由A'得到的B为单循环置换且A'与A的差距最小。定义A与A'的差距为,有多少个i满足A[i] != A'[i]。返回最小差距值。A.size() <= 50。
解法:要得到的B为单循环置换,则A'也为单循环置换。如果置换A含有t个循环节,if (t==1)差距为0,否则最小差距为t,原因是可以通过交换某两个数的位置,使得两个循环变为1个循环。
tag:math, permutation
// BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "PerfectPermutation.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define clr0(x) memset(x, 0, sizeof(x))
#define clr1(x) memset(x, -1, sizeof(x))
#define pb push_back
#define sz(v) ((int)(v).size())
#define all(t) t.begin(),t.end()
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<a<<" "
#define tst1(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> vi;
typedef vector<string> vs;
typedef vector<double> vd;
typedef pair<int, int> pii;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int inf = / ; class PerfectPermutation
{
public:
bool v[];
int reorder(vector <int> p){
clr0 (v);
int cnt = ;
for (int i = ; i < sz(p); ++ i) if (!v[p[i]]){
int t = p[i];
while (!v[t])
v[t] = , t = p[t];
++ cnt;
}
if (cnt == ) return ;
return cnt;
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arr0[] = {, , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, reorder(Arg0)); }
void test_case_1() { int Arr0[] = {, , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, reorder(Arg0)); }
void test_case_2() { int Arr0[] = {, , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, reorder(Arg0)); }
void test_case_3() { int Arr0[] = {, , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, reorder(Arg0)); }
void test_case_4() { int Arr0[] = {, , , , , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, reorder(Arg0)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
PerfectPermutation ___test;
___test.run_test(-);
return ;
}
// END CUT HERE
DIV1 500pt
题意:在一个无向图G中,可以做这样一种操作:
选取一组点(A,B,C,D),其中AB有边直接连接,CD有边直接连接,AC,AD,BC,BD无直连边。那么毁坏AB,CD相连的边,并重新连接AC和BD,或者重新连接AD和BC。
对于一张给定图,问最少多少次操作才能使其变为连通图,如果不能变为连通图输出-1。
解法:我YY了一个结论。。。如果G中已经连的边数<G中的点数-1,则输出-1;如果存在某个连通块点数为1,输出-1;否则输出连通块的数目-1。
下面是证明:称题目所给操作为L操作。
由题可以推出以下几点:1、L操作不改变边的数量;2、如果去除了AB相连的边,AB还是在同一个连通块中,即AB在某个环上,则L操作可以将两个连通块变为一个;3、如果某个连通块的边数>=点数,即该连通块含有环,那么一定能够通过L操作将它与另一个含有边的连通块融合为一个。而连通块含有边的条件就是点数大于1;4、对于连通块的数目,一次L操作要么不改变连通块的数目,要么使连通快的数目减1。
由1,2,3可知,当G中边数>=点数且不存在点数为1的连通块时,可通过不断进行L操作来将将连通块数目减少到1,即此时一定可以将G变为连通图。
由4可知,每次L操作只能使连通块数目减1,则一定需要连通块数目-1次L操作才能将G变为联通图。所以,问题得证。
Ps:官方题解貌似使用记录所有联通块的点数和边数,不断合并联通块的方式来做的。我的代码比它的简单多了^ ^。
tag:think, graph, good
// BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "StrangeCountry.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define clr0(x) memset(x, 0, sizeof(x))
#define clr1(x) memset(x, -1, sizeof(x))
#define pb push_back
#define sz(v) ((int)(v).size())
#define all(t) t.begin(),t.end()
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<a<<" "
#define tst1(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> vi;
typedef vector<string> vs;
typedef vector<double> vd;
typedef pair<int, int> pii;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int inf = / ; class StrangeCountry
{
public:
int f[], cnt[];
int find (int x)
{
if (x != f[x]) f[x] = find(f[x]);
return f[x];
}
int transform(vector <string> g){
int num = ;
for (int i = ; i < sz(g); ++ i)
for (int j = ; j < sz(g); ++ j)
if (i != j && g[i][j] == 'Y') ++ num;
num /= ;
if (num < sz(g)-) return -; for (int i = ; i < sz(g); ++ i) f[i] = i;
for (int i = ; i < sz(g); ++ i)
for (int j = ; j < sz(g); ++ j) if (g[i][j] == 'Y'){
int t1 = find(i), t2 = find(j);
if (t1 != t2) f[t1] = t2;
}
int ret = ;
clr0 (cnt);
for (int i = ; i < sz(g); ++ i){
int t = find (i);
if (!cnt[t]) ++ ret;
++ cnt[t];
}
for (int i = ; i < sz(g); ++ i)
if (cnt[i] == ) return -;
return ret - ;
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { string Arr0[] = {"NYNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYYYNN", "YNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYYYNN", "NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNN", "NNNNNNNNNNNNNYNNNNNNNNNNNNNNYNNNNNNNNNNNNNNN", "YNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYYYNN", "NNNNNNNNNYNNNNNNNNNNNNNNNYYNNNNNNNNNNNNNNNNN", "NNNNNNNNYNNNYNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNY", "NNNNNNNNNNNNNYNNNNNNNYNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNYNNNNNNNNNNNNNNNYYNNNNNYNNNNNNNNNNN", "NNNNNNYNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNYNNNYNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNYNNNNNNNNY", "NNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNYNNNNNN", "NNNNNNNNNNYNNNNYNNNNNNNNNNNNNNNNNNYNNNNNNNNY", "NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNYN", "NNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNYNNNNNNNNNNNNNNNNNYNNNNNNYNYNNNNN", "NNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNNNNNNYNNYNNNNNNNNNNNNN", "NNNNNNNNNNNNNNYNYNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNYNNNYYNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNYNNNYNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNNYNNNNNNYNNNNNNNNNNNNN", "NNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNNYNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNNYNNNYNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNYN", "NNNNNNNNNNNNYNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNYNNNNNNNN", "NNNNNNNNNNNNNNNYNYNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNYNNNNN", "NNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNN", "NNNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNNYNNNNNNN", "YYNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYYNN", "YYNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYNYNN", "YYNNNNNYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYYNNN", "NNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNYNNNNNNNNNNNN", "NNNNNNNNNNYNNNNYNYNNNNNNNNNNNNNNNNNNNNNNNNNN"}; vector <string> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, transform(Arg0)); }
void test_case_1() { string Arr0[] = {"NYYNN",
"YNYNN",
"YYNNN",
"NNNNY",
"NNNYN"}; vector <string> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, transform(Arg0)); }
void test_case_2() { string Arr0[] = {"NYYNNNN",
"YNYNNNN",
"YYNNNNN",
"NNNNYYN",
"NNNYNYY",
"NNNYYNY",
"NNNNYYN"}; vector <string> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, transform(Arg0)); }
void test_case_3() { string Arr0[] = {"NYNYNNNNNNNN",
"YNYNNNNNNNNN",
"NYNYYNNNNNNN",
"YNYNNNNNNNNN",
"NNYNNYYNNNNN",
"NNNNYNYNNNNN",
"NNNNYYNNNNNN",
"NNNNNNNNYYNN",
"NNNNNNNYNYNN",
"NNNNNNNYYNNN",
"NNNNNNNNNNNY",
"NNNNNNNNNNYN"}; vector <string> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; verify_case(, Arg1, transform(Arg0)); }
void test_case_4() { string Arr0[] = {"NYNNNN",
"YNYNNN",
"NYNYNN",
"NNYNNN",
"NNNNNY",
"NNNNYN"}; vector <string> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = -; verify_case(, Arg1, transform(Arg0)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
StrangeCountry ___test;
___test.run_test(-);
return ;
}
// END CUT HERE
SRM 441(1-250pt, 1-500pt)的更多相关文章
- SRM475 - SRM479(1-250pt,500pt)
SRM 475 DIV1 300pt 题意:玩游戏.给一个棋盘,它有1×n(1行n列,每列标号分别为0,1,2..n-1)的格子,每个格子里面可以放一个棋子,并且给定一个只含三个字母WBR,长度为n的 ...
- SRM468 - SRM469(1-250pt, 500pt)
SRM 468 DIV1 250pt 题意:给出字典,按照一定要求进行查找. 解法:模拟题,暴力即可. tag:water score: 0.... 这是第一次AC的代码: /* * Author: ...
- SRM470 - SRM474(1-250pt,500pt)(471-500pt为最短路,474-500pt未做)
SRM 470 DIV1 250pt 题意:有n个房间排成一排,相邻两个房间之间有一扇关闭着的门(共n-1扇),每个门上都标有‘A’-‘P’的大写字母.给定一个数n,表示第n个房间.有两个人John和 ...
- SRM593(1-250pt,500pt)
SRM 593 DIV1 250pt 题意:有如下图所示的平面,每个六边形有坐标.将其中一些六边形染色,要求有边相邻的两个六边形不能染同一种颜色.给定哪些六边形需要染色,问最少需要多少种颜色. 解法: ...
- topcoder srm 553
div1 250pt: 题意:... 解法:先假设空出来的位置是0,然后模拟一次看看是不是满足,如果不行的话,我们只需要关心最后栈顶的元素取值是不是受空白处的影响,于是还是模拟一下. // BEGIN ...
- topcoder srm 552
div1 250pt: 题意:用RGB三种颜色的球摆N层的三角形,要求相邻的不同色,给出RGB的数量,问最多能摆几个 解法:三种颜色的数量要么是全一样,要么是两个一样,另外一个比他们多一个,于是可以分 ...
- topcoder srm 551
div1 250pt 题意:一个长度最多50的字符串,每次操作可以交换相邻的两个字符,问,经过最多MaxSwaps次交换之后,最多能让多少个相同的字符连起来 解法:对于每种字符,枚举一个“集结点”,让 ...
- topcoder srm 550
div1 250pt: 题意:有个机器人,从某一点出发,他只有碰到地形边缘或者碰到走过的点时才会改变运动方向,然后接着走,现在给出他的运动轨迹,判断他的运动是否合法,如果合法的话,那么整个地形的最小面 ...
- topcoder srm 610
div1 250pt: 题意:100*100的01矩阵,找出来面积最大的“类似国际象棋棋盘”的子矩阵. 解法:枚举矩阵宽(水平方向)的起点和终点,然后利用尺取法来找到每个固定宽度下的最大矩阵,不断更新 ...
随机推荐
- MyEclipse激活失败,解决办法
文章参考:http://www.cnblogs.com/dingyuanxin/p/4046356.html 失败可能是:systemid和exe破解出来的那个对应不上: 1.启动MyEclipse, ...
- Object-C — KVO & oc通知
键值观察(KVO)是基于键值编码的一种技术. 利用键值观察可以注册成为一个对象的观察者,在该对象的某个属性变化时收到通知. 被观察对象需要编写符合KVC标准的存取方法,编写键值观察分为以下三步: (1 ...
- Flex基础相关
本篇文章转载于http://www.ruanyifeng.com/blog/2015/07/flex-grammar.html,原作者阮一峰. 网页布局(layout)是CSS的一个重点应用. 布局的 ...
- JavaScript的push(),pop(),concat()方法
push 方法 将新元素添加到一个数组中,并返回数组的新长度值. arrayObj.push([item1 [item2 [. . . [itemN ]]]]) 参数 arrayObj 必选项.一个 ...
- boost::thread boost库线程
一.boost::thread的创建 1.线程创建方法一: boost::shared_ptr<boost::thread> writeThread_; boost::function0& ...
- Apache Virtual Include
2.目录支持includes: <Directory /> Options None //不支持includes ...
- codeblocks调试(转载)
单步调试 1)设置断点 在需要设置断点处,右击左边行号,Add breakpoint,则出现一个红色的点(可以同时设置多个,前提是不能在debug的运行模式下). 2)调试运行 Debug-> ...
- Objective-C property属性解析
@interface … @property (原子性,可写性,内存管理) id name; @end 原子性: nonatomic, atomic 默认atomic 可写性: rea ...
- BASLER 镜头选型白皮书
本文翻译自Basler镜头选型白皮书 有许多方法来进行镜头选型.本文将会讨论其中的指导原则,以帮助你在项目中选择合适的镜头.我们将讨论许多镜头的基本概念,比如镜头接口.图像大小.放大率.焦距.F数和光 ...
- 写的一个Makefile
#========================================================================= # # MAKE FILE FOR ROCKY # ...