poj 2975 Nim(博弈)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 5232 | Accepted: 2444 |
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.
A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.
Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
111
1011
1101
There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.
Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.
Sample Input
3
7 11 13
2
1000000000 1000000000
0
Sample Output
3
0
Source
【思路】
博弈
设v=a1^a2…^an,对于i,如果ai>(v^ai)则先手可以把ai变为v^ai,此时局面必败。累计ans即可。
【代码】
#include<cstdio>
using namespace std; int n,a[]; int main() {
while(scanf("%d",&n)== && n) {
int v=,ans=;
for(int i=;i<n;i++)
scanf("%d",&a[i]) , v^=a[i];
for(int i=;i<n;i++)
if((v^a[i])<a[i]) ans++;
printf("%d\n",ans);
}
return ;
}
poj 2975 Nim(博弈)的更多相关文章
- POJ 2234 Nim博弈
思路: nim博弈裸题 xor一下 //By SiriusRen #include <cstdio> using namespace std; int n,tmp,xx; int main ...
- POJ 2975 Nim 尼姆博弈
题目大意:尼姆博弈,求先手必胜的情况数 题目思路:判断 ans=(a[1]^a[2]--^a[n]),求ans^a[i] < a[i]的个数. #include<iostream> ...
- POJ 2975 Nim(博弈)题解
题意:已知异或和为0为必败态,异或和不为0为必胜态,问你有几种方法把开局从当前状态转为必败态. 思路:也就是说,我们要选一堆石头,然后从这堆石头拿走一些使剩下的石碓异或和为0.那么只要剩下石堆的异或和 ...
- POJ 2975 Nim(博弈论)
[题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...
- poj -2975 Nim
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4312 Accepted: 1998 Description ...
- [原博客] POJ 2975 Nim 统计必胜走法个数
题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0 ...
- poj 2975 Nim 博弈论
令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...
- POJ 2975 Nim(普通nim)
题目链接 #include<iostream> #include<cstdio> using namespace std; int main() { ]; int sum,cn ...
- POJ 2234 Matches Game(Nim博弈裸题)
Description Here is a simple game. In this game, there are several piles of matches and two players. ...
随机推荐
- Js 上传文件 页面不刷新
html控件代码: <form id="form1"> <p><input type="file" name="mfil ...
- dispatchkeyevent的调用机制
http://blog.csdn.net/look85/article/details/23740761 dispatchKeyEvent和onKeyDown关系: 当键盘按下时 首先触发dispat ...
- Mvc-项目遇到问题解决办法
项目中验证 在@using (Html.BeginForm()) 后边都有 @Html.ValidationSummary(), @Html.ValidationSummary(true, " ...
- SQL For Xml
最近遇到点棘手的问题,大致如下: 1.数据局格式: 企业名称 排口名称 监测时间 监测因子 a b c pH值 a b c 氨氮 a b c 化学需氧量(COD) 企业名称.排口名称 ...
- Struts2中EL表达式取值
http://blog.csdn.net/cuihaiyang/article/details/41950141 (写的不错,可以知道为什么struts2可以用El取属性值的问题.正常el从reque ...
- 【JAVA集合】HashMap源码分析(转载)
原文出处:http://www.cnblogs.com/chenpi/p/5280304.html 以下内容基于jdk1.7.0_79源码: 什么是HashMap 基于哈希表的一个Map接口实现,存储 ...
- jQuery EasyUI 1.4.4 Combobox无法检索中文输入的问题
在项目里使用了EasyUI的Combobox,当ComboBox的item是英文时,都能正常检索出对应项,但是如果使用中文输入法输入几个字母然后通过按shift键输入时,奇怪的事情发生了,combob ...
- apache2.4配置虚拟目录
刚开始学习,跟着韩顺平老师的视频课件学习ing~ 这是自己在配置虚拟目录时遇到的问题以及解决办法,记录下来~ ---------------------------分割线君-------------- ...
- [CSS]position定位
CSS position 属性 通过使用 position 属性,我们可以选择 4 种不同类型的定位,这会影响元素框生成的方式. position 属性值的含义: static 元素框正常生成.块级元 ...
- Bag of Words/Bag of Features的Matlab源码发布
2010年11月19日 ⁄ 技术, 科研 ⁄ 共 1296字 ⁄ 评论数 26 ⁄ 被围观 4,150 阅读+ 由于自己以前发过一篇文章讲bow特征的matlab代码的优化的<Bag-Of-Wo ...