Poj 2528-Mayor's posters 线段切割
Mayor's posters
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. Input The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
Output For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input. Sample Input
Sample Output
Source |
题意:给出一些海报,后贴的会把先贴的覆盖,问最多能看到多少张海报。
题解:
线段切割
学习了一个线段切割
其实很简单的。
具体看 IOI2004年薛矛的论文《剖析线段树与矩形切割》。
概括起来就是前面的线段不会影响后面的线段,所以从后面往前面推。对于每个线段,我们只考虑后面的线段对它的影响,影响有五类(论文第26页中有),我们可以将其简化为三类 :
不相交:
1.两个线段不相交。
相交:
2.前一个线段的左端点小于后一个线段的左端点(包括了 前一个线段覆盖了后一个线段的前半部分 和 前一个线段覆盖了后一个线段)
3.前一个线段的右端点大于后一个线段的右端点(包括了 前一个线段覆盖了后一个线段的后半部分 和 前一个线段覆盖了后一个线段)
具体看程序:
- #include<bits/stdc++.h>
- using namespace std;
- int N,x[],y[],ans[];
- int read()
- {
- int s=,fh=;char ch=getchar();
- while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
- while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
- return s*fh;
- }
- void Cover(int l,int r,int k,int k1)
- {
- while(k<=N&&(r<x[k]||l>y[k]))k++;
- if(k>=N+){ans[k1]+=(r-l+);return;}
- if(l<x[k])Cover(l,x[k]-,k+,k1);
- if(r>y[k])Cover(y[k]+,r,k+,k1);
- }
- int main()
- {
- int T,i,tot;
- T=read();
- while(T--)
- {
- N=read();
- for(i=;i<=N;i++){x[i]=read();y[i]=read();}
- memset(ans,,sizeof(ans));
- for(i=N;i>=;i--)Cover(x[i],y[i],i+,i);
- tot=;
- for(i=;i<=N;i++)if(ans[i]>)tot++;
- printf("%d\n",tot);
- }
- fclose(stdin);
- fclose(stdout);
- return ;
- }
Poj 2528-Mayor's posters 线段切割的更多相关文章
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- poj 2528 Mayor's posters 线段树区间更新
Mayor's posters Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
- poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化
Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...
- POJ 2528 Mayor's posters (线段树+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions:75394 Accepted: 21747 ...
- POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 45703 Accepted: 13239 ...
- POJ 2528 Mayor's posters (线段树)
题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...
- poj 2528 Mayor's posters(线段树)
题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...
- POJ 2528 Mayor's posters (线段树区间更新+离散化)
题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...
随机推荐
- Win32 CreateWindow GdiPlus
#include "stdafx.h" #include "TestGidPlus.h" LRESULT CALLBACK WndProc(HWND, UINT ...
- Web用户自定义控件
在新建项的时候,选择Web用户控件,可用来自定义自己的控件,做好后,直接拖到页面即可使用自定义控件与WEB交互,需要在 自定义控件里面 写 属性,如: public string CityID { g ...
- mysql 主从搭建步骤
mysql 主从搭建步骤 1:主库开启master端bin-log 2:主库创建备份用户 3:主库全备 4:从库导入全备数据 5:从库修改change master to信息 6:从库slave st ...
- wcf通道Channel
正文 客户端与服务进行交互的过程是通过通道进行交互的.客户端通过调用代理类执行相应的方法,通过通道编码,调用上下文,传输客户端的事务,管理可靠会话,对消息正文的加密,最后要执行的通道是传输通道就像我们 ...
- #Leet Code# Evaluate Reverse Polish Notation
描述:计算逆波兰表达法的结果 Sample: [", "*"] -> ((2 + 1) * 3) -> 9 [", "/", & ...
- hdu 1009 贪心算法
博主英语不好,看懂个大概,老鼠有M磅猫食.有N个房间,每个房间前有一只猫,房间里有老鼠最喜欢的食品JavaBean,J[i].若要引开猫,必须付出相应的猫食F[i]. 当然这只老鼠没必要每次都付出所有 ...
- 【转】【Top 100 Best Blogs for iOS Developers】
原文地址:http://www.softwarehow.com/best-blogs-for-ios-developers/ (by JP Zhang | Last updated: Apr 5, 2 ...
- iOS开发之本地化
一.简介 * 使用本地化功能,可以轻松地将应用程序翻译成多种语言,甚至可以翻译成同一语言的多种方言 * 如果要添加本地化功能,需要为每种支持的语言创建一个子目录,称为”本地化文件夹”,通常使用.lpr ...
- Metasploit介绍
Metasploit是一款开源的安全漏洞检测工具,可以帮助安全和IT专业人士识别安全性问题,验证漏洞的缓解措施,并管理专家驱动的安全性进行评估, 提供真正的安全风险情报.这些功能包括智能开发,密码审计 ...
- ECMall系统请求跳转分析
ecmall是一个基于mvc模式框架系统,跟thinkphp有点像.先从ecmall的入口开始,ecmall入口文件upload/index.php.admin.php: index.php启动ecm ...