3585: mex

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 322  Solved: 169
[Submit][Status]

Description

  有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

Input

  第一行n,m。
  第二行为n个数。
  从第三行开始,每行一个询问l,r。

Output

  一行一个数,表示每个询问的答案。

Sample Input

5 5
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5

Sample Output

1
2
3
0
3

HINT

数据规模和约定

  对于100%的数据:

  1<=n,m<=200000

  0<=ai<=109

  1<=l<=r<=n

  对于30%的数据:

  1<=n,m<=1000

题解:

同上一题。

只不过a[i]是int范围内的,那我们只要把v数组换成map即可。

代码:

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 250000+5
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,a[maxn],sg[maxn],next[maxn],ans[maxn];
map<int,int>mp;
struct seg{int l,r,mi;}t[*maxn];
struct rec{int l,r,id;}c[maxn];
inline void build(int k,int l,int r)
{
t[k].l=l;t[k].r=r;int mid=(l+r)>>;
t[k].mi=inf;
if(l==r){t[k].mi=sg[l];return;}
build(k<<,l,mid);build(k<<|,mid+,r);
}
inline void update(int k,int z)
{
t[k].mi=min(t[k].mi,z);
}
inline void pushdown(int k)
{
if(t[k].mi==inf)return;
update(k<<,t[k].mi);
update(k<<|,t[k].mi);
t[k].mi=inf;
}
inline void change(int k,int x,int y,int z)
{
int l=t[k].l,r=t[k].r,mid=(l+r)>>;
if(l==x&&r==y){update(k,z);return;}
pushdown(k);
if(y<=mid)change(k<<,x,y,z);
else if(x>mid)change(k<<|,x,y,z);
else change(k<<,x,mid,z),change(k<<|,mid+,y,z);
}
inline int query(int k,int x)
{
int l=t[k].l,r=t[k].r,mid=(l+r)>>;
if(l==r)return t[k].mi;
pushdown(k);
if(x<=mid)return query(k<<,x);else return query(k<<|,x);
}
inline bool cmp(rec x,rec y){return x.l<y.l;}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();int k=;
for1(i,n)
{
a[i]=read();
mp[a[i]]=;
if(a[i]==k){while(mp[k])k++;}
sg[i]=k;
}
mp.clear();
build(,,n);
for1(i,m)c[i].l=read(),c[i].r=read(),c[i].id=i;
sort(c+,c+m+,cmp);
for3(i,n,)next[i]=mp[a[i]],mp[a[i]]=i;
int now=;
for1(i,m)
{
while(now<c[i].l)
{
if(!next[now])next[now]=n+;
if(next[now]->=now+)change(,now+,next[now]-,a[now]);
now++;
}
ans[c[i].id]=query(,c[i].r);
}
for1(i,m)printf("%d\n",ans[i]);
return ;
}

BZOJ3585: mex的更多相关文章

  1. [BZOJ3585]mex(莫队+分块)

    显然可以离线主席树,这里用莫队+分块做.分块的一个重要思想是实现修改与查询时间复杂度的均衡,这里莫队和分块互相弥补. 考虑暴力的分块做法,首先显然大于n的数直接忽略,于是将值域分成sqrt(n)份,每 ...

  2. [BZOJ3585]mex 主席树

    3585: mex Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1252  Solved: 639[Submit][Status][Discuss] ...

  3. 【莫队算法】【权值分块】bzoj3585 mex

    orz PoPoQQQ. 本来蒟蒻以为这种离散化以后就对应不起来的题不能权值分块搞的说. ……结果,实际上>n的权值不会对答案作出贡献. #include<cstdio> #incl ...

  4. 【线段树】bzoj3585: mex

    非常精妙的线段树题 Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三 ...

  5. 莫队浅谈&题目讲解

    莫队浅谈&题目讲解 一.莫队的思想以及莫队的前置知识 莫队是一种离线的算法,他的实现借用了分块的思想.在学习莫队之前,本人建议学习一下分块,并对其有一定的理解. 二.莫队 现给出一道例题:bz ...

  6. NOIP2018 - 暑期博客整理

    暑假写的一些博客复习一遍.顺便再写一遍或者以现在的角度补充一点东西. 盛暑七月 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士 比较经典的基环外向树dp.可以借鉴的 ...

  7. 【离线做法 树状数组】luoguP1972 [SDOI2009]HH的项链

    与bzoj3585: mex的线段树做法有着异曲同工之妙 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...

  8. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  9. [BZOJ3585][BZOJ3339]mex

    [BZOJ3585][BZOJ3339]mex 试题描述 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入 第一行n,m.第二行为n个数.从 ...

随机推荐

  1. android 登陆案例_sd卡

    代码: <?xml version="1.0"?> -<LinearLayout android:paddingTop="@dimen/activity ...

  2. 使用qt制作简单的加法,乘法运算。

    1.首先构架qt应用项目 2.然后打开使用 Qt desinger打开 Fomr File 里的UI文件进行编辑 3.由于此程序只需点击加号,减号这两个按钮,所以设置了两个信号槽 4.然后是连接信号槽 ...

  3. 24种设计模式--中介者模式【Mediator Pattern】

    各位好,大家都是来自五湖四海,都要生存,于是都找了个靠山——公司,给你发薪水的地方,那公司就要想尽办法盈利赚钱,盈利方法则不尽相同,但是作为公司都有相同三个环节:采购.销售和库存,这个怎么说呢?比如一 ...

  4. Apache(一)

    以下介绍是基于centos,Apache/2.2.15,进行解释 (资料来自www.netcraft.com) Apache 模块化的软件 Apache=core+module(内核+模块) core ...

  5. centos7下编译qt的mysql驱动

    在编译mysql驱动之前,首先要安装mysql,可以使用yum安装,这里将不再介绍. 在将qt和mysql都安装好之后,首先找到mysql的头文件以及他的共享库,我的mysql是使用yum安装的,头文 ...

  6. log4net 总结

    说实话,我并不是太想写这篇文章,因为我承诺过要完成博客园的部分功能,所以一直都在积极的利用下班时间来完善这个系统, 但是我又不想让看我源代码的朋友不知道我写的代码是什么意思,所以我还是单独写一个文章, ...

  7. 服务控件与html标签的一点

    前言 很久没有用服务器控件开发了,在新公司待了三四个月了,这个公司一直都用服务器控件.所以在开发的过程中也发现了一丢丢的东东,也许以前就知道,只是没有认真的发现. 过程 前几天在开发页面的时候,有个需 ...

  8. 调试NodeJS应用

    OS:Windows 1.下载安装NodeJS 点击http://nodejs.org/界面上“Install”,下载后运行安装,默认安装到到C:\Program Files\nodejs.安装后确认 ...

  9. C++ map映射的使用方法

    今天考试做了道题,用上了map,这是一道提高组联赛难度的题目,先发题目: ****************************** 1. A-B problem( dec.c/cpp/pas) . ...

  10. 1.0 基础、标示符、常量、数据类型(enum 枚举,struct 结构体)、操作符、循环、数组

    一.程序 现实生活中,程序是指完成某些事务的一种既定方法和过程,可以把程序看成是一系列动作执行过程的描述. 在计算机世界,程序是指令,即为了让计算机执行某些操作或解决某个问题而编写的一系列有序指令的集 ...