If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.

Not all numbers produce palindromes so quickly. For example,

349 + 943 = 1292,

1292 + 2921 = 4213

4213 + 3124 = 7337

That is, 349 took three iterations to arrive at a palindrome.

Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process
is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either
(i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown to require over fifty iterations before producing
a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits).

Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is 4994.

How many Lychrel numbers are there below ten-thousand?

NOTE: Wording was modified slightly on 24 April 2007 to emphasise the theoretical nature of Lychrel numbers.

求10000以内的不可按以上方法迭代得出回文的数的个数。

#include <iostream>
#include <string>
using namespace std; string num2str(int n)
{
string ans = "";
while (n)
{
int a = n % 10;
char b = a + '0';
ans = b + ans;
n /= 10;
}
return ans;
} string strplus(string a, string b)
{
int len = a.length(); int flag = 0;
string ans = "";
for (int i = len - 1; i >= 0; i--)
{
int tmp = a[i] + b[i] - '0' - '0' + flag;
flag = tmp / 10;
tmp = tmp % 10;
char p = tmp + '0';
ans = p + ans;
}
if (flag == 1)
ans = '1' + ans;
return ans;
} bool pali(string a)
{
for (int i = 0; i < a.length() / 2; i++)
{
if (a[i] != a[a.length() - 1 - i])
return false;
}
return true;
} bool isLychrel(int n)
{
string a, b;
a = num2str(n);
b.assign(a.rbegin(), a.rend());
for (int i = 1; i <= 50; i++)
{
a = strplus(a, b);
if (pali(a))
return false;
b.assign(a.rbegin(), a.rend());
}
return true;
} int main()
{ int count = 0;
for (int i = 1; i <= 10000; i++)
{
if (isLychrel(i))
count++;
}
cout << count << endl;
system("pause");
return 0;
}

Project Euler:Problem 55 Lychrel numbers的更多相关文章

  1. Project Euler:Problem 88 Product-sum numbers

    A natural number, N, that can be written as the sum and product of a given set of at least two natur ...

  2. Project Euler:Problem 61 Cyclical figurate numbers

    Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygon ...

  3. Project Euler:Problem 42 Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  4. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  5. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

  6. Project Euler:Problem 93 Arithmetic expressions

    By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...

  7. Project Euler:Problem 28 Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  8. Project Euler:Problem 47 Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...

  9. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

随机推荐

  1. ARM平台的内核模块编写与安装

       Linux 系统一直在不断地发展,而相应地她的代码量也在不断的增大,直接导致的结果就是她的可执行镜像就变得越来越庞大.那么问题来了,如果将所有的镜像文件一次性地复制到内存中,那么所需的空间就非常 ...

  2. 使用程序往Neo4j导入CSV报错

    今天在用程序向Neo4j导入csv文件时,报以下错误: java.net.ConnectException: Connection refused: connect java.rmi.ConnectE ...

  3. POJ1258-Agri-Net-ACM

    Description Farmer John has been elected mayor of his town! One of his campaign promises was to brin ...

  4. phpcms v9 get调用标签整理

    常见的phpcms标签调用  1.调用本系统单条数据(调用ID为1的信息,标题长度不超过25个汉字,显示更新日期): "select * from phpcms_content where  ...

  5. Python核心编程2第一章课后练习

    1-1 在windows下的安装方法在网上下载python2.7直接安装到C盘1)在系统变量中找到path. 2)编辑path值,添加你安装的python路径,C:\Python27. 3)检验pyt ...

  6. HDU 5166(缺失数查找输出)

    HDU 5166 Time Limit:1000MS  Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Description T ...

  7. MVC架构模式

    MVC是一个框架模式,它强制性的使应用程序的输入.处理和输出分开.使用MVC应用程序被分成三个核心部件:模型.视图.控制器. V页面传递数据给C,C调用模型处理返回数据给V 最典型的MVC就是JSP ...

  8. Linux——搭建PHP开发环境第三步:mysql

    原文链接:http://www.jb51.net/article/83647.htm 1.第一步就是看linu是否安装了mysql,经过rpm -qa|grep mysql查看到centos下安装了m ...

  9. 【转】分享II→IV FPGA本人的几个版本电源模块设计的方案

    很多人问我FPGA的电源怎么怎么着,当然也有人瞎忽悠乱设计,当然我的设计也不是很完美...这里把我当年第一次设计FPGA,到现在的电源方案,几个演变.分析的过程,给大家讲讲... (1)FPGA电源方 ...

  10. [BZOJ 3747] [POI 2015] Kinoman【线段树】

    Problem Link : BZOJ 3747 题解:ZYF-ZYF 神犇的题解 解题的大致思路是,当区间的右端点向右移动一格时,只有两个区间的左端点对应的答案发生了变化. 从 f[i] + 1 到 ...