Description

给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000)。给你两个顶点S和T,求一条路径,使得路径上最大边和最小边的比值最小。如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个比值,如果需要,表示成一个既约分数。 备注: 两个顶点之间可能有多条路径。

Input

第一行包含两个正整数,N和M。 下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶。 最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。

Output

如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。

Sample Input

【样例输入1】
4 2
1 2 1
3 4 2
1 4
【样例输入2】
3 3
1 2 10
1 2 5
2 3 8
1 3
【样例输入3】
3 2
1 2 2
2 3 4
1 3

Sample Output

【样例输出1】
IMPOSSIBLE
【样例输出2】
5/4
【样例输出3】
2

HINT

【数据范围】
1<  N < = 500
1 < = x, y < = N,0 < v < 30000,x ≠ y
0 < M < =5000

Source

【分析】

凑数题。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <queue>
#include <map> const int MAXN = + ;
const int MAXM = + ;
using namespace std;
struct EDGE{
int u, v ,w;
bool operator < (EDGE B)const{
return w < B.w;
}
}edge[MAXM];
int n, m, parent[MAXN];
int s, t; int find(int x){return parent[x] < ? x:parent[x] = find(parent[x]);}
void merge(int x, int y){
if (parent[x] > parent[y]){
parent[y] += parent[x];
parent[x] = y;
}else{
parent[x] += parent[y];
parent[y] = x;
}
}
void init(){
scanf("%d%d", &n, &m);
memset(parent, -, sizeof(parent));
for (int i = ; i <= m; i++){
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
}
scanf("%d%d", &s, &t);
sort(edge + , edge + + m);
}
int gcd(int a, int b){return b == ? a:gcd(b, a % b);}
void work(){
int A = , B = ;
//枚举边长最小的边
for (int i = ; i <= m; i++){
memset(parent, -, sizeof(parent));
int j;
for (j = i; j <= m; j++){
int u = edge[j].u, v = edge[j].v;
u = find(u); v = find(v);
if (u != v) merge(u, v);
if (find(s) == find(t)) break;
}
if (j <= m){
if (edge[i].w * A > edge[j].w * B){
A = edge[j].w;
B = edge[i].w;
}
}
}
if (A == && B == ) {printf("IMPOSSIBLE\n");return;}
if (A % B == ) printf("%d\n", A / B);
else printf("%d/%d", A / gcd(A, B), B / gcd(A, B));
} int main(){
int T;
#ifdef LOCAL
freopen("data.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
init();
work();
return ;
}

【BZOJ1050】【枚举+并查集】旅行comf的更多相关文章

  1. BZOJ 1050: [HAOI2006]旅行comf(枚举+并查集)

    [HAOI2006]旅行comf Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点 ...

  2. bzoj 1050: [HAOI2006]旅行comf【枚举+并查集】

    m是5000,就想到了直接枚举比例 具体做法是是先把边按照边权从小到大排序,然后先枚举最小边权,再枚举最大边权,就是从最小边权里一个一个加进并查集里,每次查st是否联通,联通则退出,更新答案 #inc ...

  3. POJ 1944 Fiber Communications (枚举 + 并查集 OR 线段树)

    题意 在一个有N(1 ≤ N ≤ 1,000)个点环形图上有P(1 ≤ P ≤ 10,000)对点需要连接.连接只能连接环上相邻的点.问至少需要连接几条边. 思路 突破点在于最后的结果一定不是一个环! ...

  4. bzoj 4078: [Wf2014]Metal Processing Plant【二分+2-SAT+枚举+并查集】

    枚举从大到小s1,二分s2(越大越有可能符合),2-SAT判断,ans取min 思路倒是挺简单的,就是二分的时候出了比较诡异的问题,只能二分s2的值,不能在数组上二分... 有个优化,就是当不是二分图 ...

  5. nyoj 711 枚举+并查集

     #include<stdio.h>//从大到小不断枚举边直到找到s-t的路径,判断从s可以到t可以用并查集来判断 #include<stdlib.h>//枚举最大的一条边肯定 ...

  6. SGU 128. Snake --- 暴力枚举+并查集+贪心+计算几何

    <传送门> 128. Snake time limit per test: 0.25 sec. memory limit per test: 4096 KB There are N poi ...

  7. [BZOJ1050][HAOI2006]旅行comf 枚举+并查集

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1050 将边排序,枚举边权最小的边,依次加边直到S和T连通,更新答案. #include&l ...

  8. HDU 1598 find the most comfortable road(枚举+并查集,类似于最小生成树)

    一开始想到用BFS,写了之后,发现有点不太行.网上查了一下别人的解法. 首先将边从小到大排序,然后从最小边开始枚举,每次取比它大的边,直到start.end属于同一个集合,即可以连通时停止.过程类似于 ...

  9. BZOJ 1050 枚举+并查集

    思路: 枚举最大边 像Kruskal一样加边 每回更新一下 就搞定了- //By SiriusRen #include <cstdio> #include <cstring> ...

随机推荐

  1. (转载)JavaScript中定义变量

    (转载)http://blog.163.com/xuxiaoqianhz@126/blog/static/165190577201061594421870/ JavaScript中定义变量有两种方式: ...

  2. Mac 系统显示和隐藏文件的方法

    1. 代码法: 显示Mac隐藏文件的命令:defaults write com.apple.finder AppleShowAllFiles -bool true 隐藏Mac隐藏文件的命令:defau ...

  3. Unity 的“Vertex Lit Rendering path“中 shader Pass 的注意事项

    "MADFINGER/Environment/Unlit (Supports Lightmap)"是 ShadowGun 示例中最简单的 shader 了,如下: // Unlit ...

  4. nginx主配置文件 在那找怎么打开

  5. 阿里巴巴开源项目:分布式数据库同步系统otter(解决中美异地机房) - agapple - ITeye技术网站

    阿里巴巴开源项目:分布式数据库同步系统otter(解决中美异地机房) - agapple - ITeye技术网站 阿里巴巴开源项目:分布式数据库同步系统otter(解决中美异地机房)

  6. Broken line - SGU 124(判断点与多边形的关系)

    题目大意:RT 分析:构造一条射线,如果穿越偶数条边,那么就在多边形外面,如果穿越奇数条边,那么就在多边形里面. 代码如下: ===================================== ...

  7. stickyListHeaders框架的使用

    最近在Demo中使用到了stickyListHeaders框架实现悬停效果 比较好用 在xml中 <se.emilsjolander.stickylistheaders.StickyListHe ...

  8. c#基础语言编程-编码

    字符编码是计算机技术的基础理论,其字符编码有ASCII码.UTF-8.还有就是GB2312,当然这是在中国常用的. 1.ASCII码 在计算机内部所有的信息都是以二进制字符进行存储.用每个二进制位中的 ...

  9. Java 23种设计模式详尽分析与实例解析之二--结构型模式

    Java设计模式 结构型模式 适配器模式 模式动机:在软件开发中采用类似于电源适配器的设计和编码技巧被称为适配器模式.通常情况下,客户端可以通过目标类的接口访问它所提供的服务.又是,现有的类可以满足客 ...

  10. LINQ多条件OR模糊查询

    本文章转载:http://www.cnblogs.com/guyun/archive/2012/10/18/2729888.html 需求是这样的,有一张表tbl(Key[int],Value[str ...