题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4602

我们可以特判出n<= k的情况。

对于1<= k<n,我们可以等效为n个点排成一列,并取出其中的连续k个点。下面分两种情况考虑:

第一种情况,被选出的不包含端点,那么有(n–k−1)种情况完成上述操作,剩下未被圈的点之间还有(n–k−2)个位置,可以在每个位置断开,所以共2^(n−k−2) ∗(n−k−1)种方法。

第二种情况,即被选出的包含端点,那么有2种情况,并且剩余共(n–k−1)个位置,所以共2∗2^(n–k−1)种方法。

总计2∗2^(n–k−1) +2^(n–k−2) ∗(n–k−1)=(n–k+3)* 2^(n–k−2)。

 #include<cstdio>
using namespace std;
const long long moder = 1e9 + ; long long power(long long t){
if(t == ) return ;
long long ans = power(t/) % moder;
ans = ans * ans % moder;
if(t % ) ans = ans * % moder;
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
int n,k;
scanf("%d%d",&n,&k);
if(k>n) printf("0\n");
else if(k == n) printf("1\n");
else if(n - k == ) printf("2\n");
else{
long long int ans = (((n-k+)%moder)* (power(n-k-)%moder))% moder ;
printf("%I64d\n",ans);
}
}
}

hdu 4602 Partition 数学(组合-隔板法)的更多相关文章

  1. hdu 4602 Partition

    http://acm.hdu.edu.cn/showproblem.php?pid=4602 输入 n 和 k 首先 f(n)中k的个数 等于 f(n-1) 中 k-1的个数 最终等于 f(n-k+1 ...

  2. hdu 4602 Partition (概率方法)

    Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. hdu 4602 Partition(矩阵快速幂乘法)

    Problem Description Define f(n) , we have =+++ =++ =++ =++ =+ =+ =+ = totally ways. Actually, we wil ...

  4. HDU 4602 Partition (矩阵乘法)

    Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. hdu 4602 Partition 矩阵快速幂

    Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Proble ...

  6. hdu 4602 Partition(快速幂)

    推公式+快速幂 公式有很多形式,可以写矩阵 1.前n-1项和的两倍+2的(n-2)次方,这个写不出啥 2.递推式:f(n)=2*f(n-1)+2的(n-3)次方 3.公式:2的(n-k-2)次方*(n ...

  7. 逆元 组合A(n,m) C(n,m)递推 隔板法

    求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...

  8. vijos1060 隔板法

    排列组合问题 之前没有学过隔板法,随便学习了一下 其实挺好理解的 附上题解: 先只考虑一种球:因为有n个盒子每个盒子可以放任意多球,还可以空出来任意多球.所以可以考虑为n+1个盒子,最后一个盒子里面是 ...

  9. How do you add? UVA - 10943(组合数的隔板法!!)

    题意: 把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法? 隔板法...不会的可以买一本高中数学知识清单...给高中班主任打个广告.... 隔板法分两种...一种是不存在空集 = C(n- ...

随机推荐

  1. Linux下sqlite的安装与使用

      简介 SQLite是一款轻量级数据库,是遵守ACID的关联式数据库管理系统.它的设计目的是嵌入式.目前已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百KB的内存就 ...

  2. 添加Pods后,import无提示的解决办法

    选择工程的 Target -> Build Settings 菜单,找到\”User Header Search Paths\”设置项 新增一个值"$(PODS_ROOT)" ...

  3. SGU 113.Nearly prime numbers

    水一个代码: #include <iostream> using namespace std; int n, a; bool ok; bool prime (int x) { ; i * ...

  4. Getopt::Long 模块的简单使用

    用法简介 1.带值参数传入程序内部 ※参数类型:整数, 浮点数, 字串 GetOptions( 'tag=s' => \$tag ); ‘=’表示此参数一定要有参数值, 若改用’:'代替表示参数 ...

  5. filter过滤器执行顺序

    浏览器请求---->进入过滤器---->进入doFilter方法--->执行chain.doFilter()方法就会放行----->进入业务逻辑方法------>进入过滤 ...

  6. Why Doesn’t Drag-and-Drop work when my Application is Running Elevated? – A: Mandatory Integrity Control and UIPI(转载)

    f you run notepad elevated (Right click | Run as Administrator), and you try and drag-and-drop a fil ...

  7. 那些年被我坑过的Python——山外有山(第四章)

    装饰器: 定义: 本质是函数,(装饰其他函数)就是为其他函数添加附加功能原则: 1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 优点: 装饰器带来的最直观的好处:减少对函数的细化 ...

  8. Vim及VimScript资料总结《转载》

    版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   Vim教程 入门 Vim 实用技术 Learning the vi and Vim Editors A Byte of ...

  9. C++例题1:输出可打印字符

    #include<iostream>#include<stdlib.h>#include<cctype>int main(){ int i;char a=0; fo ...

  10. ubuntu 解压rar

    Ubuntu下解压rar文件的方法 一般通过默认安装的ubuntu是不能解压rar文件的,只有在安装了rar解压工具之后,才可以解压.其实在ubuntu下安装rar解压工具是非常简单的,只需要两个步骤 ...