hdu 4602 Partition 数学(组合-隔板法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4602
我们可以特判出n<= k的情况。
对于1<= k<n,我们可以等效为n个点排成一列,并取出其中的连续k个点。下面分两种情况考虑:
第一种情况,被选出的不包含端点,那么有(n–k−1)种情况完成上述操作,剩下未被圈的点之间还有(n–k−2)个位置,可以在每个位置断开,所以共2^(n−k−2) ∗(n−k−1)种方法。
第二种情况,即被选出的包含端点,那么有2种情况,并且剩余共(n–k−1)个位置,所以共2∗2^(n–k−1)种方法。
总计2∗2^(n–k−1) +2^(n–k−2) ∗(n–k−1)=(n–k+3)* 2^(n–k−2)。
#include<cstdio>
using namespace std;
const long long moder = 1e9 + ; long long power(long long t){
if(t == ) return ;
long long ans = power(t/) % moder;
ans = ans * ans % moder;
if(t % ) ans = ans * % moder;
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
int n,k;
scanf("%d%d",&n,&k);
if(k>n) printf("0\n");
else if(k == n) printf("1\n");
else if(n - k == ) printf("2\n");
else{
long long int ans = (((n-k+)%moder)* (power(n-k-)%moder))% moder ;
printf("%I64d\n",ans);
}
}
}
hdu 4602 Partition 数学(组合-隔板法)的更多相关文章
- hdu 4602 Partition
http://acm.hdu.edu.cn/showproblem.php?pid=4602 输入 n 和 k 首先 f(n)中k的个数 等于 f(n-1) 中 k-1的个数 最终等于 f(n-k+1 ...
- hdu 4602 Partition (概率方法)
Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- hdu 4602 Partition(矩阵快速幂乘法)
Problem Description Define f(n) , we have =+++ =++ =++ =++ =+ =+ =+ = totally ways. Actually, we wil ...
- HDU 4602 Partition (矩阵乘法)
Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 4602 Partition 矩阵快速幂
Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- hdu 4602 Partition(快速幂)
推公式+快速幂 公式有很多形式,可以写矩阵 1.前n-1项和的两倍+2的(n-2)次方,这个写不出啥 2.递推式:f(n)=2*f(n-1)+2的(n-3)次方 3.公式:2的(n-k-2)次方*(n ...
- 逆元 组合A(n,m) C(n,m)递推 隔板法
求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...
- vijos1060 隔板法
排列组合问题 之前没有学过隔板法,随便学习了一下 其实挺好理解的 附上题解: 先只考虑一种球:因为有n个盒子每个盒子可以放任意多球,还可以空出来任意多球.所以可以考虑为n+1个盒子,最后一个盒子里面是 ...
- How do you add? UVA - 10943(组合数的隔板法!!)
题意: 把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法? 隔板法...不会的可以买一本高中数学知识清单...给高中班主任打个广告.... 隔板法分两种...一种是不存在空集 = C(n- ...
随机推荐
- 一则自用iptables例子解释
公网IP:110.24.3.83内网IP:10.252.214.186局域网数据库:10.252.214.100 通过NAT端口转发,访问110.24.3.83:3308端口跳转到局域网数据库机器的3 ...
- OSG中相机参数的更改
#pragma comment(lib, "osg.lib") #pragma comment(lib, "osgDB.lib") #pragma commen ...
- POJ3285 River Hopscotch(最大化最小值之二分查找)
POJ3285 River Hopscotch 此题是大白P142页(即POJ2456)的一个变形题,典型的最大化最小值问题. C(x)表示要求的最小距离为X时,此时需要删除的石子.二分枚举X,直到找 ...
- CentOS6.5升级为CentOS7.0
CentOS6.5升级为CentOS7.0 CentOS6.5升级为CentOS7 升级前: [root@localhost ~]# cat /proc/version Linux version ...
- 关掉PUTTY后,进程仍可以运行。
如果你正在运行一个进程,而且你觉得在退出帐户时该进程还不会结束,那么可以使用nohup命令.该命令可以在你退出帐户之后继续运行相应的进程.no hup就是不挂起的意思( no hang up).该命令 ...
- extjs中gridpanel动态显示/隐藏列
在extjs3中,大家知道用 myGrid.getColumnModel().setHidden(i,true);但到了4.0后,已经没有getColumnModel这个方法了,我们在Ext.pane ...
- jQuery幻灯片skitter-slider插件学习总结
@(关键词)[skitter|jquery|网页幻灯片|slider] Skitter 是一个非常酷炫的jQuery网页幻灯片插件,支持非常多种酷炫幻灯片切换方式,下载前往官网,另有参考文档 下面简单 ...
- Magento 2.0 安装
环境: 直接升到最新版PHP5.6.x 刚才开MAC OS PHP 5.5 CENTOS PHP 5.5 composer install 依懒包错误.反复安装组件.还是不行.后来决定重新编释最 ...
- mysql数据类型——时间类型
四种日期格式: 每个时间类型有一个有效值范围和一个"零"值,当指定不合法的MySQL不能表示的值时使用"零"值. YEAR 0000 YYYY ...
- [css][移动设备]禁止横竖屏时内容自动调整
参考:http://www.kankanews.com/ICkengine/archives/106643.shtml iOS下当竖屏转向横屏的时候,发现内容字体会自动变大,通过各种方法设置字体大小都 ...