Spark相对于Hadoop MapReduce有一个很显著的特性就是“迭代计算”(作为一个MapReduce的忠实粉丝,能这样说,大家都懂了吧),这在我们的业务场景里真的是非常有用。
 
假设我们有一个文本文件“datas”,每一行有三列数据,以“\t”分隔,模拟生成文件的代码如下:
 
 
执行该代码之后,文本文件会存储于本地路径:/tmp/datas,它包含1000行测试数据,将其上传至我们的测试Hadoop集群,路径:/user/yurun/datas,命令如下:
 
 
查询一下它的状态:
 
 
我们通过Spark SQL API将其注册为一张表,代码如下:
 
 
表的名称为source,它有三列,列名分别为:col1、col2、col3,类型都为字符串(str),测试打印其前10行数据:
 
 
假设我们的分析需求如下:
 
(1)过滤条件:col1 = ‘col1_50',以col2为分组,求col3的最大值;
(2)过滤条件:col1 = 'col1_50',以col3为分组,求col2的最小值;
 
注意:需求是不是很变态,再次注意我们只是模拟。
 
通过情况下我们可以这么做:
 
 
每一个collect()(Action)都会产生一个Spark Job,
 
 
因为这两个需求的处理逻辑是类似的,它们都有两个Stage:
 
 
可以看出这两个Job的数据输入量是一致的,根据输入量的具体数值,我们可以推断出这两个Job都是直接从原始数据(文本文件)计算的。
 
这种情况在Hive(MapReduce)的世界里是很难优化的,处理逻辑虽然简单,却无法使用一条SQL语句表述(有的是因为分析逻辑复杂,有的则因为各个处理逻辑的结果需要独立存储),只能一个需求对应一(多)条SQL语句(如上示例),带来的问题就是全量原始数据多次被分析,在海量数据的场景下必然带来集群资源的巨大浪费。
 
其实这两个需求有一个共同点:过滤条件相同(col1 = 'col1_50'),一个很自然的想法就是将满足过滤条件的数据缓存,然后在缓存数据之上执行计算,Spark为我们做到了这一点。
 
 
依然是两个Job,每个Job仍然是两个Stage,但这两个Stage的输入数据量(Input)已发生变化:
 
 
 
Job1的Input(数据输入量)仍然是63.5KB,是因为“cacheTable”仅仅在RDD(cacheRDD)第一次被触发计算并执行完成之后才会生效,因此Job1的Input是63.5KB;而Job2执行时“cacheTable”已生效,直接输入缓存中的数据即可,因此Job2的Input减少为3.4KB,而且因为所需缓存的数据量小,可以完全被缓存于内存中,因此效率极高。
 
我们也可以从Spark相关页面中确认“cache”确实生效:
 
 
我们也需要注意cacheTable与uncacheTable的使用时机,cacheTable主要用于缓存中间表结果,它的特点是少量数据且被后续计算(SQL)频繁使用;如果中间表结果使用完毕,我们应该立即使用uncacheTable释放缓存空间,用于缓存其它数据(示例中注释uncacheTable操作,是为了页面中可以清楚看到表被缓存的效果)。

Spark SQL利器:cacheTable/uncacheTable的更多相关文章

  1. Spark SQL利器:cacheTable/uncacheTable【转】

    转自:http://www.cnblogs.com/yurunmiao/p/4936583.html Spark相对于Hadoop MapReduce有一个很显著的特性就是“迭代计算”(作为一个Map ...

  2. Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南

    Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完 ...

  3. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  4. Spark SQL 之 Performance Tuning & Distributed SQL Engine

    Spark SQL 之 Performance Tuning & Distributed SQL Engine 转载请注明出处:http://www.cnblogs.com/BYRans/ 缓 ...

  5. spark sql cache

    1.几种缓存数据的方法 例如有一张hive表叫做activity 1.CACHE TABLE //缓存全表 sqlContext.sql("CACHE TABLE activity" ...

  6. Spark SQL 初步

    已经Spark Submit 2013哪里有介绍Spark SQL.就在很多人都介绍Catalyst查询优化框架.经过一年的发展后,.今年Spark Submit 2014在.Databricks放弃 ...

  7. Spark SQL笔记——技术点汇总

    目录 概述 原理 组成 执行流程 性能 API 应用程序模板 通用读写方法 RDD转为DataFrame Parquet文件数据源 JSON文件数据源 Hive数据源 数据库JDBC数据源 DataF ...

  8. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  9. Spark SQL官方文档阅读--待完善

    1,DataFrame是一个将数据格式化为列形式的分布式容器,类似于一个关系型数据库表. 编程入口:SQLContext 2,SQLContext由SparkContext对象创建 也可创建一个功能更 ...

随机推荐

  1. ASP.NET项目中使用CKEditor +CKFinder 实现上传图片

    CKEditor是什么 CKEidtor是一个在线富文本编辑器,可以将让用户所见即所得的获得编辑在线文本,编辑器或自动将用户编辑的文字格式转换成html代码. 在ASP.NET工程中添加CKEdito ...

  2. php 解决大流量网站访问量问题

    当一个网站发展为知名网站的时候(如新浪,腾讯,网易,雅虎),网站的访问量通常都会非常大,如果使用虚拟主机的话,网站就会因为访问量过大而引起 服务器性能问题,这是很多人的烦恼,有人使用取消RSS等错误的 ...

  3. C++的函数重载 转

    ——每个现象后面都隐藏一个本质,关键在于我们是否去挖掘 写在前面: 函数重载的重要性不言而明,但是你知道C++中函数重载是如何实现的呢(虽然本文谈的是C++中函数重载的实现,但我想其它语言也是类似的) ...

  4. async: false的应用.

    目的: 手机webview中, js ajax请求, success后, 进行window.open 操作 问题: 在Android, IOS均不能执行window.open 解决办法: 设置ajax ...

  5. 【实习记】2014-08-26都是回车惹的祸——shell脚本必须是unix行尾

        事情由起:svn的url在excel里,我复制到txt文本下,vi做些文本处理,只提取了url,保存为url.txt.再用vi处理url.txt,加上svn checkout等词,变成可以运行 ...

  6. php和js根据子网掩码和ip计算子网

    php $ip = '192.168.6.1'; $mask = '255.255.2.0'; $sub_net = array();//子网 $ip_explode = explode('.', $ ...

  7. Python 3中套接字编程中遇到TypeError: 'str' does not support the buffer interface的解决办法

    转自:http://blog.csdn.net/chuanchuan608/article/details/17915959 目前正在学习python,使用的工具为python3.2.3.发现3x版本 ...

  8. svn修改密码跟账户

    在co的时候直接输入账户跟密码 svn co  ${SVNURL} ./ --username **--password *** 或者删除缓存文件,在Linux上面 删除~/.subversion/a ...

  9. WPF扩展标记

    标记扩展和 WPF XAML,标记扩展是 XAML 语言以及 XAML 服务的 .NET 实现的常规功能 XAML 处理器和标记扩展 XAML 分析器可将特性值解释为可转换成基元的文本字符串,或可通过 ...

  10. C 字符串倒转,XCode中编译

    正在学习ios开发,在前期学习c时,常规方法直接倒转数组的值,只能用于非中文字符,否则出现乱码, 在网上找了点资料,可能是 IDE不一致,一直得不到自己想要的值.花时间自己改了一下,正常通过 //字符 ...