数学(莫比乌斯函数):BZOJ 2440 完全平方数
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9,T ≤ 50
通过容斥原理可以发现莫比乌斯函数起了作用。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
int prime[maxn],cnt;
int mu[maxn];
bool check[maxn]; void Prepare(){
mu[]=;
for(int i=;i<=;i++){
if(!check[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;j<=cnt;j++){
if(prime[j]*i>)break;
check[prime[j]*i]=true;
if(i%prime[j]==){
mu[prime[j]*i]=;
break;
}
mu[prime[j]*i]=mu[i]*-;
}
}
} int Solve(int k){
int l=k,r=;
while(l<=r){
int mid=(1ll*l+1ll*r)>>;
long long tot=;
for(int i=;i*i<=mid;i++)
tot+=mid/(i*i)*mu[i];
if(tot>=k)r=mid-;
else l=mid+;
}
return l;
}
int T,k;
int main(){
//freopen("","",stdin);
//freopen("","",stdout);
Prepare();
scanf("%d",&T);
while(T--){
scanf("%d",&k);
printf("%d\n",Solve(k));
}
return ;
}
数学(莫比乌斯函数):BZOJ 2440 完全平方数的更多相关文章
- bzoj 2440 完全平方数 【莫比乌斯函数】
题目 题意:第Ki 个不是完全平方数的正整数倍的数. 对于一个数t,t以内的数里的非完全平方数倍数的个数:num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数 ...
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- BZOJ 2440 完全平方数
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 966 Solved: 457 [Submit][Sta ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
随机推荐
- 关于css中伪类及伪元素的总结
css中的伪类和伪元素总是混淆,今天参考了很多资料,也查看了部分文档,现将伪类及伪元素总结如下: 一.由来: 伪类和伪元素的引入都是因为在文档树里有些信息无法被充分描述,比如CSS没有"段落 ...
- Java——(三)Collection之Set集合、HashSet类
------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- 一.Set集合 Set集合不允许包含相同的元素,如果试图把两个相同的元素加入同一个Set集合中, ...
- 省市联级菜单--js+html
<!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...
- PowerDesigner15的安装和破解
一.PowerDesigner15的安装 运行安装包,出现如下安装界面
- $HTTP_RAW_POST_DATA
这是手册里写的 总是产生变量包含有原始的 POST 数据.否则,此变量仅在碰到未识别 MIME 类型的数据时产生.不过,访问原始 POST 数据的更好方法是 php://input.$HTTP_RAW ...
- hibernate中使用HQL进行数据库查询
1.写的规则比较简单,我讲一下,如图Station这个不是数据库中的表,而是entity包中的类名Station,可以省略 select * 2.返回的类型自动转化为String类型,不用你自己再转化 ...
- oracle中获取特定时间的前一天
select to_char(to_date('@rq','YYYY-MM-DD')-1,'YYYY-MM-DD') FROM DUAL 把@rq换成你要的时间就行了
- objective-c相关知识点
1,objective-c中实现线程同步: Mutexlock (互斥锁).NSCondition lock (条件锁)消息传送 2,UDP和TCP: TCP :传输控制协议,可以提供面向连接的.可靠 ...
- c#中设置按钮Button为透明
方法一:代码实现 /// <summary> /// 设置透明按钮样式 /// </summary> private void SetBtnStyle(Button btn) ...
- spring data jpa Specification 例子
/** * 封装查询条件 * * @param baseQueryDTO * @return */ private Specification<ActivityBase> getSpeci ...