Problem Description
Yuanfang is puzzled with the question below:
There
are n integers, a1, a2, …, an. The initial
values of them are 0. There are four kinds of operations.
Operation 1: Add c
to each number between ax and ay inclusive. In other
words, do transformation ak<---ak+c, k =
x,x+1,…,y.
Operation 2: Multiply c to each number between ax and
ay inclusive. In other words, do transformation
ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the
numbers between ax and ay to c, inclusive. In other words,
do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the
sum of p power among the numbers between ax and ay
inclusive. In other words, get the result of
axp+ax+1p+…+ay
p.
Yuanfang has no idea of how to do it. So he wants to ask you to
help him. 
                                                         --by HDUoj
http://acm.hdu.edu.cn/showproblem.php?pid=4578


因为p<4,所以,直接线段树维护区间和,平方和,立方和,三棵树,打上乘法,加法,更改标记,注意down的顺序;
所以,会线段树的话,这题主要考代码能力......和信仰。
记得及时取模。
代码如下:
 #include<cstdio>
#define mod 10007
using namespace std; long long tree[][];
long long mark1[],mark2[],mark3[]; int n,m,L,R;
long long a,b; void work();
void build(int ,int ,int );
void up(int );
void down(int ,int ,int );
void change(int ,int ,int );
long long sum(int ,int ,int ); int main()
{
while()
{
scanf("%d%d",&n,&m);
if(n==&&m==)
return ;
work();
}
} void work()
{
int i;
long long ans=;
build(,n,);
for(i=;i<=m;i++)
{
scanf("%d%d%d%d",&b,&L,&R,&a);
if(b==)
{
ans=sum(,n,);
printf("%lld\n",ans%mod);
}
else
change(,n,);
}
} void build(int l,int r,int nu)
{
tree[][nu]=tree[][nu]=tree[][nu]=mark1[nu]=mark3[nu]=;
mark2[nu]=;
if(l==r)
return ;
int mid=(l+r)>>;
build(l,mid,nu<<);
build(mid+,r,nu<<|);
} void up(int nu)
{
tree[][nu]=(tree[][nu<<]+tree[][nu<<|])%mod;
tree[][nu]=(tree[][nu<<]+tree[][nu<<|])%mod;
tree[][nu]=(tree[][nu<<]+tree[][nu<<|])%mod;
} void down(int l,int r,int nu)
{
int mid=(l+r)>>;
if(mark3[nu])
{
tree[][nu<<]=tree[][nu<<]=tree[][nu<<]=;
mark1[nu<<]=;mark2[nu<<]=;
mark3[nu<<]=mark3[nu];
tree[][nu<<|]=tree[][nu<<|]=tree[][nu<<|]=;
mark1[nu<<|]=;mark2[nu<<|]=;
mark3[nu<<|]=mark3[nu];
}
tree[][nu<<]=(tree[][nu<<]*mark2[nu]*mark2[nu]*mark2[nu])%mod;
tree[][nu<<]=(tree[][nu<<]*mark2[nu]*mark2[nu])%mod;
tree[][nu<<]=(tree[][nu<<]*mark2[nu])%mod;
tree[][nu<<]=(tree[][nu<<]+*tree[][nu<<]*mark1[nu]+*tree[][nu<<]*mark1[nu]*mark1[nu]+(mid-l+)*mark1[nu]*mark1[nu]*mark1[nu])%mod;
tree[][nu<<]=(tree[][nu<<]+*mark1[nu]*tree[][nu<<]+(mid-l+)*mark1[nu]*mark1[nu])%mod;
tree[][nu<<]=(tree[][nu<<]+mark1[nu]*(mid-l+))%mod;
mark2[nu<<]=(mark2[nu<<]*mark2[nu])%mod;
mark1[nu<<]=(mark1[nu<<]*mark2[nu]+mark1[nu])%mod;
tree[][nu<<|]=(tree[][nu<<|]*mark2[nu]*mark2[nu]*mark2[nu])%mod;
tree[][nu<<|]=(tree[][nu<<|]*mark2[nu]*mark2[nu])%mod;
tree[][nu<<|]=(tree[][nu<<|]*mark2[nu])%mod;
tree[][nu<<|]=(tree[][nu<<|]+*tree[][nu<<|]*mark1[nu]+*tree[][nu<<|]*mark1[nu]*mark1[nu]+(r-mid)*mark1[nu]*mark1[nu]*mark1[nu])%mod;
tree[][nu<<|]=(tree[][nu<<|]+*mark1[nu]*tree[][nu<<|]+(r-mid)*mark1[nu]*mark1[nu])%mod;
tree[][nu<<|]=(tree[][nu<<|]+mark1[nu]*(r-mid))%mod;
mark2[nu<<|]=(mark2[nu<<|]*mark2[nu])%mod;
mark1[nu<<|]=(mark1[nu<<|]*mark2[nu]+mark1[nu])%mod;
mark1[nu]=mark3[nu]=;mark2[nu]=;
} void change(int l,int r,int nu)
{
if(L<=l&&r<=R)
{
if(b==)
{
mark1[nu]=a;
mark2[nu]=;
mark3[nu]=;
tree[][nu]=a*(r-l+)%mod;
tree[][nu]=(a*a*(r-l+))%mod;
tree[][nu]=(a*a*a*(r-l+))%mod;
}
if(b==)
{
mark1[nu]=(mark1[nu]*a)%mod;
mark2[nu]=(mark2[nu]*a)%mod;
tree[][nu]=(tree[][nu]*a)%mod;
tree[][nu]=(tree[][nu]*a*a)%mod;
tree[][nu]=(tree[][nu]*a*a*a)%mod;
}
if(b==)
{
mark1[nu]=(mark1[nu]+a)%mod;
tree[][nu]=(tree[][nu]+*tree[][nu]*a+*tree[][nu]*a*a+(r-l+)*a*a*a)%mod;
tree[][nu]=(tree[][nu]+*a*tree[][nu]+(r-l+)*a*a)%mod;
tree[][nu]=(tree[][nu]+a*(r-l+))%mod;
}
return;
}
down(l,r,nu);
int mid=(l+r)>>;
if(L<=mid)
change(l,mid,nu<<);
if(R>=mid+)
change(mid+,r,nu<<|);
up(nu);
} long long sum(int l,int r,int nu)
{
long long su=;
if(L<=l&&r<=R)
return tree[a][nu];
down(l,r,nu);
int mid=(l+r)>>;
if(L<=mid)
su+=sum(l,mid,nu<<);
if(R>=mid+)
su+=sum(mid+,r,nu<<|);
su=su%mod;
return su;
}
祝AC哟;

HDU P4578 Transformation的更多相关文章

  1. HDU 4578 - Transformation - [加强版线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is puzzled with the ...

  2. HDU 4578 Transformation (线段树区间多种更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=4578 题目大意:对于一个给定序列,序列内所有数的初始值为0,有4种操作.1:区间(x, y)内的所有数字全部加上 ...

  3. hdu 4578 Transformation

    http://acm.hdu.edu.cn/showproblem.php?pid=4578 题意:1,a,b,c代表在a,b区间的每一个数加上c:2,a,b,c代表在a,b区间的每一个数乘上c: 3 ...

  4. HDU 4578 Transformation (线段树)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)T ...

  5. HDU 4578——Transformation——————【线段树区间操作、确定操作顺序】

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)T ...

  6. Hdu 4578 Transformation (线段树 分类分析)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)T ...

  7. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

  8. hdu 4578 Transformation 线段树

    没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...

  9. hdu 4578 Transformation(线段树)

    线段树上的多操作... 题目大意: 树上 的初始值为0,然后有下列三种操作和求和. 1  x y c  在X-Y的之间全部加上C. 2  x y c  在X-Y的之间全部乘上C. 3  x y c   ...

随机推荐

  1. delphi xe5 android 控制蓝牙

    本文部分内容摘自: http://www.pclviewer.com/android/用以下代码中的接口实现控制蓝牙的开.关及详细信息 unit Androidapi.JNI.BluetoothAda ...

  2. 服务器部署_nginx报错: [warn] conflicting server name "www.test.com" on 0.0.0.0:80, ignored

    今天修改nginx配置文件nginx.conf之后,启动nginx就会报错.经仔细检查是重复配置了 server元素导致, 当nginx检测到重复的 server_name item.test.com ...

  3. http://www.tuicool.com/articles/RzUzqei

    http://www.tuicool.com/articles/RzUzqei http://www.cnblogs.com/piaolingzxh/archive/2015/01/01/419783 ...

  4. [Gauss]POJ2065 SETI

    题意: *代表0,a-z代表1-26 题目第三行给了一个公式 f (k) = $\sum\limits_{i=0}^{n-1} a_i k^i \pmod{P}$  {f(i)是输入的一串字符串中第i ...

  5. [dp]Codeforces30C Shooting Gallery

    题目链接 题意: 给n个点 每个点的坐标 x y 出现的时间t 射中的概率 从i点到j点的时间为它们的距离. 求射中个数的最大期望 很水的dp  坑点就是要用LL #include <cstdi ...

  6. DHTMLX 前端框架 建立你的一个应用程序 教程(八)-- 添加表单Form

    添加表单Form 我们下一步是在页面中添加一个表单,表格中的选中字段将会显示在表单中.提供一个提交按钮 可以对显示的数据进行修改提交. 添加表单到布局单元格中 1.在右侧布局中使用attachForm ...

  7. win7桌面图标小盾牌怎么去掉(2种方法)

    很多用户都会在桌面上放置一些常用的程序图标,由于win7系统提高了系统安全性,新增用户帐户控制,所以会在图标上显示小盾牌,表示需要管理员权限打开.不少win7 32位旗舰版用户觉得这个小盾牌很碍眼,那 ...

  8. 忘记commit的一次教训

    由于业务需求,已经上线的系统新增加了一些需求,其中一个需求是,从一个SQLSERVER数据库导入数据到生产的ORCLE数据库, 由于我的失误导致系统上线后 生产的Oracle数据没有导入成功,但是在本 ...

  9. 使用Html.fromHtml将html格式字符串应用到textview上面

    在android中,有一个容易遗忘的Html.fromhtml方法,意思是可以将比如文本框中的字符串进行HTML格式化,支持的还是很多的, 但要注意的是要在string.xml中用<!--cda ...

  10. leetcode面试准备: Game of Life

    leetcode面试准备: Game of Life 1 题目 According to the Wikipedia's article: "The Game of Life, also k ...