OpenCV学习笔记:矩阵的掩码操作
矩阵的掩码操作很简单。其思想是:根据掩码矩阵(也称作核)重新计算图像中每个像素的值。掩码矩阵中的值表示近邻像素值(包括该像素自身的值)对新像素值有多大影响。从数学观点看,我们用自己设置的权值,对像素邻域内的值做了个加权平均。
测试用例
思考一下图像对比度增强的问题。我们可以对图像的每个像素应用下面的公式:

上面那种表达法是公式的形式,而下面那种是以掩码矩阵表示的紧凑形式。使用掩码矩阵的时候,我们先把矩阵中心的元素(上面的例子中是(0,0)位置的元素,也就是5)对齐到要计算的目标像素上,再把邻域像素值和相应的矩阵元素值的乘积加起来。虽然这两种形式是完全等价的,但在大矩阵情况下,下面的形式看起来会清楚得多。
现在,我们来看看实现掩码操作的两种方法。一种方法是用基本的像素访问方法,另一种方法是用 filter2D 函数。
基本方法
下面是实现了上述功能的函数:
void Sharpen(const Mat& myImage,Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U); // 仅接受uchar图像 Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels(); for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1); uchar* output = Result.ptr<uchar>(j); for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
}
} Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
}
刚进入函数的时候,我们要确保输入图像是无符号字符类型的。为了做到这点,我们使用了 CV_Assert 函数。若该函数括号内的表达式为false,则会抛出一个错误。
CV_Assert(myImage.depth() == CV_8U); // 仅接受uchar图像
然后,我们创建了一个与输入有着相同大小和类型的输出图像。在 图像矩阵是如何存储在内存之中的? 一节可以看到,根据图像的通道数,我们有一个或多个子列。我们用指针在每一个通道上迭代,因此通道数就决定了需计算的元素总数。
Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();
利用C语言的[]操作符,我们能简单明了地访问像素。因为要同时访问多行像素,所以我们获取了其中每一行像素的指针(分别是前一行、当前行和下一行)。此外,我们还需要一个指向计算结果存储位置的指针。有了这些指针后,我们使用[]操作符,就能轻松访问到目标元素。为了让输出指针向前移动,我们在每一次操作之后对输出指针进行了递增(移动一个字节):
for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1); uchar* output = Result.ptr<uchar>(j); for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
*output++ = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
}
}
在图像的边界上,上面给出的公式会访问不存在的像素位置(比如(0,-1))。因此我们的公式对边界点来说是未定义的。一种简单的解决方法,是不对这些边界点使用掩码,而直接把它们设为0:
Result.row(0).setTo(Scalar(0)); // 上边界
Result.row(Result.rows-1).setTo(Scalar(0)); // 下边界
Result.col(0).setTo(Scalar(0)); // 左边界
Result.col(Result.cols-1).setTo(Scalar(0)); // 右边界
filter2D函数
滤波器在图像处理中的应用太广泛了,因此OpenCV也有个用到了滤波器掩码(某些场合也称作核)的函数。不过想使用这个函数,你必须先定义一个表示掩码的 Mat 对象:
Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
然后调用 filter2D 函数,参数包括输入、输出图像以及用到的核:
filter2D(I, K, I.depth(), kern );
它还带有第五个可选参数——指定核的中心,和第六个可选参数——指定函数在未定义区域(边界)的行为。使用该函数有一些优点,如代码更加清晰简洁、通常比 自己实现的方法 速度更快(因为有一些专门针对它实现的优化技术)等等。例如,我测试的滤波器方法仅花了13毫秒,而前面那样自己实现迭代方法花了约31毫秒,二者有着不小差距。
示例:

你可以从 here 下载这个示例的源代码,也可浏览OpenCV源代码库的示例目录samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp
OpenCV学习笔记:矩阵的掩码操作的更多相关文章
- 《学习opencv》笔记——矩阵和图像操作——cvCalcCovarMatrix,cvCmp and cvCmpS
矩阵和图像的操作 (1)cvCalcCovarMatrix函数 其结构 void cvCalcCovarMatrix(计算给定点的均值和协方差矩阵 const CvArr** vects,//给定向量 ...
- 《学习opencv》笔记——矩阵和图像操作——cvSetIdentity,cvSolve,cvSplit,cvSub,cvSubS and cvSubRS
矩阵和图像的操作 (1)cvSetIdentity函数 其结构 void cvSetIdentity(//将矩阵行与列相等的元素置为1.其余元素置为0 CvArr* arr//目标矩阵 ); 实例代码 ...
- 《学习opencv》笔记——矩阵和图像操作——cvAnd、cvAndS、cvAvg and cvAvgSdv
矩阵和图像的操作 (1)cvAnd函数 其结构 void cvAnd( //将src1和src2按像素点取"位与运算" const CvArr* src1,//第一个矩阵 cons ...
- 《学习opencv》笔记——矩阵和图像操作——cvAbs,cvAbsDiff and cvAbsDiffS
矩阵和图像的操作 (1)cvAbs,cvAbsdiff,cvAbsDiffS 它们的结构为: void cvAbs( //取src中元素的绝对值,写到dst中 const CvArr* src, co ...
- 《学习opencv》笔记——矩阵和图像操作——cvInRange,cvInRangeS,cvInvert and cvMahalonobis
矩阵和图像的操作 (1)cvInRange函数 其结构 void cvInRange(//提取图像中在阈值中间的部分 const CvArr* src,//目标图像 const CvArr* lowe ...
- 《学习opencv》笔记——矩阵和图像操作——cvCrossProduct and cvCvtColor
矩阵和图像的操作 (1)cvCrossProduct函数 其结构 void cvCrossProdust(//计算两个三维向量的叉积 const CvArr* src1, const CvArr* s ...
- 《学习opencv》笔记——矩阵和图像操作——cvConvertScale,cvConvertScaleAbs,cvCopy and cvCountNonZero
矩阵和图像的操作 (1)cvConvertScale函数 其结构: void cvConvertScale( //进行线性变换,将src乘scale加上shift保存到dst const CvArr* ...
- opencv学习笔记(05)——操作相邻区域
下面的例子以灰度图像为例: #include <opencv2\highgui\highgui.hpp> #include <opencv2\imgproc\imgproc.hpp& ...
- opencv学习笔记(01)——操作图像的像素
#include <opencv2\core\core.hpp> #include <opencv2\highgui\highgui.hpp> #include <ope ...
随机推荐
- Google Map JavaScript API V3 实例大全
Google Map JavaScript API V3 实例大全 基础知识 简单的例子 地理位置 语言 位置 坐标 简单的投影 事件 简单事件 关闭事件 多次添加事件 事件属性 控制 php禁用ui ...
- 关于Masonry框架(AutoLayout)的用法--面向初学者
Masonry作为目前较为流行的自动布局第三方框架,简单易用,大大减少了程序员花在UI布局和屏幕适配的精力与时间. 1 基本用法 1.1 事例1: 图1-1 // 首先是view1自动布局 [view ...
- nodejs学习[持续更新]
1.退出node process.exit(0) 2.把API从上往下全部看一遍,先混个眼熟. 3. end
- UVA - 572 Oil Deposits(dfs)
题意:求连通块个数. 分析:dfs. #include<cstdio> #include<cstring> #include<cstdlib> #include&l ...
- CAS原理
JDK5之前Java是靠synchronized关键字保证同步,这种机制存在以下问题: 在多线程竞争下,加锁.释放锁会导致比较多的上下文切换和调度延时,引起性能问题 一个线程持有锁会导致其他需要此锁的 ...
- 在ctex环境下利用Metapost作图
使用Metapost作图,是LaTeX的好搭档.下面介绍如何在ctex环境下的使用Metapost作图. 首先新建一个test.mp的Metapost文件. 在文件开始需要声明如下代码: prolog ...
- 简单易用的Rest
今天碰巧,用到了淘宝的在线IP地址查询的Rest API,它提供接口给用户查询IP地址的归宿地.数据库比较庞大,准确性也比较高.地址为:http://ip.taobao.com/instruction ...
- spring-boot 整合redis作为数据缓存
添加依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>sp ...
- gentoo下grub文件编辑
在编译完内核,配置好网络,配置好fstab文件等等,最后一个至关重要的文件要属grub文件了,该文件的配置成功才最终决定gentoo 是否成功装上,首先当然是 emerge grub 了,现在就可以配 ...
- Extension method for type
扩展其实真的很简单 msdn是这样规定扩展方法的:"扩展方法被定义为静态方法,但它们是通过实例方法语法进行调用的. 它们的第一个参数指定该方法作用于哪个类型,并且该参数以 this 修饰符为 ...