[BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】
题目链接:BZOJ - 1874
题目分析
这个是一种组合游戏,是许多单个SG游戏的和。
就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏中选一个进行决策,如果所有单个游戏都无法决策,游戏失败。
有一个结论,SG(A + B + C ... ) = SG(A)^SG(B)^SG(C) ...
这道题每堆石子不超过 1000 , 所以可以把 [0, 1000] 的 SG 值暴力求出来,使用最原始的 SG 函数的定义, SG(u) = mex(SG(v)) E(u -> v) 。
注意 m <= 10 所以一个状态 i 的后继状态不超过 10 个,那么它的 SG 值不会超过 10 。
然后将每一堆的 SG 值异或起来。如果必胜,就按照顺序枚举一下所有初始方案,找到必胜的就输出并退出。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const int MaxNum = 1000 + 5, MaxN = 10 + 5; int n, m, Mark_Index;
int A[MaxN], B[MaxN], SG[MaxNum], Mark[MaxN]; void Calc_SG() {
SG[0] = 0;
Mark_Index = 0;
memset(Mark, 0, sizeof(Mark));
for (int i = 1; i <= 1000; ++i) {
++Mark_Index;
for (int j = 1; j <= m; ++j) {
if (B[j] > i) continue;
Mark[SG[i - B[j]]] = Mark_Index;
}
for (int j = 0; j <= 10; ++j) {
if (Mark[j] != Mark_Index) {
SG[i] = j;
break;
}
}
}
} int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", &A[i]);
scanf("%d", &m);
for (int i = 1; i <= m; ++i) scanf("%d", &B[i]);
Calc_SG();
int Temp = 0;
for (int i = 1; i <= n; ++i) Temp ^= SG[A[i]];
if (Temp == 0) printf("NO\n");
else {
printf("YES\n");
bool Flag = false;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (B[j] > A[i]) continue;
if ((Temp ^ SG[A[i]] ^ SG[A[i] - B[j]]) == 0) {
Flag = true;
printf("%d %d\n", i, B[j]);
break;
}
}
if (Flag) break;
}
}
return 0;
}
[BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】的更多相关文章
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]
小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 871 Solved: 365[Submit][Status][Discuss] Description ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏
Time Limit: 5 Sec Memory Limit: 162 MB Submit: 957 Solved: 394 [Submit][Status][Discuss] Description ...
- bzoj 1874: [BeiJing2009 WinterCamp]取石子游戏【博弈论】
先预处理出来sg值,然后先手必败状态就是sg[a[i]]的xor和为0(nim) 如果xor和不为0,那么一定有办法通过一步让xor和为0,具体就是选一个最大的sg[a[i]],把它去成其他sg值的x ...
- [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数
Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...
- 1874: [BeiJing2009 WinterCamp]取石子游戏 - BZOJ
Description小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问 ...
- bzoj1874 [BeiJing2009 WinterCamp]取石子游戏
1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 925 Solved: 381[ ...
- [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论
取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...
- 【BZOJ1874】取石子游戏(SG函数)
题意:小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作, 他想问你他是否有必 ...
随机推荐
- qt 学习之路 :QML 语法
前面我们已经见识过 QML 文档.一个 QML 文档分为 import 和对象声明两部分.如果你要使用 Qt Quick,就需要 import QtQuick 2.QML 是一种声明语言,用于描述程序 ...
- MapReduce最佳成绩统计,男生女生比比看
上一篇文章我们了解了MapReduce优化方面的知识,现在我们通过简单的项目,学会如何优化MapReduce性能 1.项目介绍 我们使用简单的成绩数据集,统计出0~20.20~50.50~100这三个 ...
- 了解ANSI编码
ANSI:American National Standards Institute:美国国家标准学会 ANSI编码:为使计算机支持更多语言,不同国家和地区分别制定了符合自身的外文字符延伸编码方式(如 ...
- [转] SSH 密钥认证机制
使用 RSA 密钥对进行 SSH 登录验证 使用 RSA 密钥对验证 SSH 的优点是 1) 不用打密码 2) 比密码验证更安全:缺点是 1) 第一次配置的时候有点麻烦 2) 私钥需要小心保存.Any ...
- SQLite查询优化性能要点
Sqlite是轻量级的,在编译之后很小,其中一个原因就是在查询优化方面比较简单,它只是运用索引机制来进行优化的,经过对SQLite的查询优化的分析以及对源代码的研究,我将SQLite的查询优总结如下: ...
- C#使用框架,打开新选项卡
C#使用框架,打开新选项卡: --打开函数 function Open(text, url) { if ($("#tabs").tabs('exists', text ...
- Html5新增的语义化标签(部分)
2014年10月29日,万维网联盟宣布,经过接近8年的艰苦努力,html5的标准规范终于制定完成.这是互联网的一次重大变革,这也许是一个时代的来临! 总结一些h5新增的语义化标签,记录下来方便自己学习 ...
- 服务器证书安装配置指南(IIS7.5) 分类: ASP.NET 2014-11-05 12:39 105人阅读 评论(0) 收藏
1.启动IIS管理器,点击开始菜单->所有程序->管理工具->Internet信息服务(IIS)管理器: 2.选择"服务器证书": 3.在右边窗口,选择" ...
- WPF 媒体播放器(MediaElement)实例,实现进度和音量控制
WPF 视频音频播放控件MediaElement实现进度控制,音量控制实例 说明: 1.Volume控制音量的大小,double类型,并且实现了属性依赖,可以用来双向绑定:在 0 和 1. 之间的线性 ...
- TabHost理解与使用
一.继承关系 java.lang.Object ↳ android.view.View ↳ android.view.ViewGroup ↳ android.widget.FrameLayout ↳ ...