dp(完全背包)
有 NN 种物品和一个容量是 VV 的背包,每种物品都有无限件可用。
第 ii 种物品的体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
AC代码1;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define HEAP(...) priority_queue<__VA_ARGS__ >
#define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
ll read(){ll c = getchar(),Nig = ,x = ;while(!isdigit(c) && c!='-')c = getchar();if(c == '-')Nig = -,c = getchar();while(isdigit(c))x = ((x<<) + (x<<)) + (c^''),c = getchar();return Nig*x;}
#define read read()
const ll inf = 1e18;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
const int N = ;
int v[N],w[N];
int dp[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=;i<=n;i++){
for(int j=m;j>=;j--){
for(int k=;k*v[i]<=j;k++)
dp[j]=max(dp[j],dp[j-k*v[i]]+k*w[i]);
}
}
printf("%d",dp[m]);
return ;
}
AC代码2(简化版)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define HEAP(...) priority_queue<__VA_ARGS__ >
#define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
ll read(){ll c = getchar(),Nig = ,x = ;while(!isdigit(c) && c!='-')c = getchar();if(c == '-')Nig = -,c = getchar();while(isdigit(c))x = ((x<<) + (x<<)) + (c^''),c = getchar();return Nig*x;}
#define read read()
const ll inf = 1e18;
const int maxn = 1e6 + ;
const int mod = 1e9 + ;
const int N = ;
int v[N],w[N];
int dp[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=;i<=n;i++){
for(int j=v[i];j<=m;j++){//从v[i]开始枚举(而01背包是从m开始)
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
}
}
printf("%d",dp[m]);
return ;
}
dp(完全背包)的更多相关文章
- USACO Money Systems Dp 01背包
一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)
HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...
- HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)
HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...
- HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)
HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...
- HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)
HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...
- HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)
HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...
- HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)
HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...
- HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)
HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...
- POJ.3624 Charm Bracelet(DP 01背包)
POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...
随机推荐
- linq和转换运算符
1.ToArray 两种常用用法 使用ILSPY查看Enumerable中的ToArray 源码分析:我们发现如果该类型可以转化为ICollection,我们最后执行CopyTo方法,如果不能转换为I ...
- Tomcat/conf/server.xml文件中docBase和path的说明
Tomcat的项目部署方式有以下三种: 1.直接把项目复制到Tomcat安装目录的webapps目录中,这是最简单的一种Tomcat项目部署的方法.2.在tomcat安装目录中有一个conf文件夹,打 ...
- 可持久化0-1 Trie 简介
Trie树是字符串问题中应用极为广泛的一种数据结构,可以拓展出AC自动机.后缀字典树等实用数据结构. 然而在此我们考虑0-1 Trie的应用,即在序列最大异或问题中的应用. 这里的异或是指按位异或.按 ...
- JAVA 注解教程(一)简单介绍
相关网址 https://blog.csdn.net/briblue/article/details/73824058 --- 已经整理成笔记 https://blog.csdn.net/bao199 ...
- 复制文件或目录命令 - cp
1) 命令名称:cp 2) 英文原意:copy 3) 命令所在路径:/bin/cp 4) 执行权限:所有用户 5) 功能描述:复制文件或目录 语法: cp -rp [原文件或目录][目标目录] -r ...
- win10下安装es
1.安装前提 windows下已经安装好了jdk8的版本 2.下载ElasticSearch https://www.elastic.co/cn/downloads/elasticsearch#ga- ...
- spring(三):DefaultListableBeanFactory
- 代码架构.md
代码架构 待办 昨天待办 decription decription 我的流程逻辑(异常处理方式) 1568097677501.drawio.html 29.94 KB 异常的两种处理方式 异常的两种 ...
- 1069 The Black Hole of Numbers (20分)
1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...
- biquad filter实现
原始频谱: LPF: HPF: 代码: #include<stdio.h> #include<stdlib.h> #include<errno.h> #includ ...