Here is a note of Distance dependent Chinese Restaurant Processes

文章链接http://pan.baidu.com/s/1dEk7ZA5

1. Distance dependent CRPs

In the traditional CRP ,the probability of a customer sitting at a table is computed from the number of other customers already sitting at that table.

Now we introduce the distance dependent CRP, the seating plan probability is described in terms of the probability of a customer sitting with each of the other customers .

let denote the i th customer assignment ,the index of the customer with whom the i th customer is sitting ,let denote the distance measurement between customers i and j , let D denote the set of all distance measurements between all customers ,and let be a decay function .

Notice that the customer assignments do not depend on other customer assignment , only the distances between customers.

This distribution is determined by the nature of the distance measurements and the decay function .For many sets of distance measurements ,the resulting distribution over partition is no longer exchangeable ;this is an appropriate distribution to use when exchangeability is not a reasonable assumption.

2.The decay function:

In general the decay function mediates how distances between customers affect the resulting distribution over partitions .Function  f is non-increasing , takes non-negative finite values ,and satisfies f(∞)=0。 (衰减函数的性质)

3. Sequential CRPs and the traditional CRP

A sequential CRP is constructed by assuming that dij=∞ for those j>i ,and this guarantees that no customer can be assigned to a later customer.And when f(d)=1 for d≠∞ and dij<∞ for j<i, the sequential CRP is can re-express the traditional CRP.

NOTICE : although these models are the same ,the corresponding Gibbs samplers are different .(why ?)

4. Marginal invariance:

The traditional CRP is marginally invariant : Marginalizing over a particular customer gives the same probability distribution as if  that customer were not included in the model at all .But the DDCRP does not have this property ,and this paper gives us two example of the relevant property of DDCRPS.

Language modeling : a fully observed model

Mixture modeling: a mixture model

5.  Relationship to dependent Dirichlet processes (DDP):(they are both infinite clustering model that models dependencies between the latent component assignments of the data )

The first difference is that the dependent Dirichlet process mixture use the truncations of the stick-breaking representation for approximate posterior inference ,in CONTRAST, the ddCRP mixtures are amenable to Gibbs sampling algorithms . Another difference is that the spirit behind them ,in the DDP, data are drawn from distributions that are similar to distributions of nearby data,and the particular values of the nearby data impose softer constraints than those in the ddCRP.(区分ddCRP与贝叶斯非参数模型)

Distance dependent Chinese Restaurant Processes的更多相关文章

  1. URAL 1962 In Chinese Restaurant 数学

    In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...

  2. Distance Dependent Infinite Latent Feature Model 阅读笔记1

    阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and Dav ...

  3. 中国餐馆过程(Chinese restaurant process)

    也就是说假设空桌子有a0个人,然后顾客选择桌子的概率和桌子上人数成正比. 性质: 改变用户的排列方式,桌子的排列方式,概率不变换.

  4. Marginalize

    在David M.Blei 的Distance Dependent Chinese Restaurant Processes 中提到:DDCRP 的一个重要性质,也是和dependent DP 的一个 ...

  5. 100 Most Popular Machine Learning Video Talks

    100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David ...

  6. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

  7. 关于LDA的文章

    转:http://www.zhizhihu.com/html/y2011/3228.html l  Theory n  Introduction u  Unsupervised learning by ...

  8. Bayesian machine learning

    from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...

  9. R Language

    向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...

随机推荐

  1. 【一起学源码-微服务】Nexflix Eureka 源码十三:Eureka源码解读完结撒花篇~!

    前言 想说的话 [一起学源码-微服务-Netflix Eureka]专栏到这里就已经全部结束了. 实话实说,从最开始Eureka Server和Eureka Client初始化的流程还是一脸闷逼,到现 ...

  2. 写代码 Log 也要认真点么?

    Log自然是需要的, 尤其是正式的产品; 但如果只是自己或内部用用的小工具, 也需要认真点吗? 实话说, 自己对 log 总是不上心, 总觉得调试好了, 能跑了, 足以. 所以, 被大妈怼了好几次 l ...

  3. [gitHub实践] 实践记录

    [gitHub实践] 实践记录 版权2019.4.19更新 Q1:本地仓库和远程仓库连接提示输入用户名密码 本地仓库和远程仓库连接有两种方式 本地初始化建立一个仓库,远程也建立了一个仓库 本地建立仓库 ...

  4. Redis实战 | 持久化、主从复制特性和故障处理思路

    前言 前面两篇我们了解了Redis的安装.Redis最常用的5种数据类型.本篇总结下Redis的持久化.主从复制特性,以及Redis服务挂了之后的一些处理思路. 前期回顾传送门: Linux下安装Re ...

  5. docker-网桥

    使用桥接网络 在网络方面,桥接网络是链路层设备,它在网络段之间转发流量. 网桥可以是硬件设备或在主机内核中运行的软件设备. Docker而言,桥接网络使用软件桥接器,该软件桥接器允许连接到同一桥接网络 ...

  6. Exceptionless运用结果

    一.后台页面功能 列表菜单 SubmitLog - 记录一般日志 log Messages SubmitException - 记录一次日志 Exceptions SubmitNotFound - 4 ...

  7. 使用SqlDependency实时监听SQL server数据库变化并执行事件

    sql server设置:ALTER DATABASE <DatabaseName> SET ENABLE_BROKER;语句让相应的数据库启用监听服务,以便支持SqlDependency ...

  8. 8款极具表现力的jQuery/CSS3网页菜单

    上一篇我向大家分享了7款效果震憾的HTML5应用组件,今天主要来分享一下CSS3网页菜单,因为在一个网站中,菜单起着举足轻重的作用,所以作为WEB开发人员,我们有必要将网站的菜单设计得尽量完美,下面向 ...

  9. Springboot2.1.1下的自定义拦截器而静态资源不能访问的问题

    1.项目结构 2.自定义拦截器 public class LoginHandlerlnterceptor implements HandlerInterceptor { //目标方法执行之前 @Ove ...

  10. 《【面试突击】— Redis篇》-- Redis哨兵原理及持久化机制

    能坚持别人不能坚持的,才能拥有别人未曾拥有的.关注编程大道公众号,让我们一同坚持心中所想,一起成长!! <[面试突击]— Redis篇>-- Redis哨兵原理及持久化机制 在这个系列里, ...