Here is a note of Distance dependent Chinese Restaurant Processes

文章链接http://pan.baidu.com/s/1dEk7ZA5

1. Distance dependent CRPs

In the traditional CRP ,the probability of a customer sitting at a table is computed from the number of other customers already sitting at that table.

Now we introduce the distance dependent CRP, the seating plan probability is described in terms of the probability of a customer sitting with each of the other customers .

let denote the i th customer assignment ,the index of the customer with whom the i th customer is sitting ,let denote the distance measurement between customers i and j , let D denote the set of all distance measurements between all customers ,and let be a decay function .

Notice that the customer assignments do not depend on other customer assignment , only the distances between customers.

This distribution is determined by the nature of the distance measurements and the decay function .For many sets of distance measurements ,the resulting distribution over partition is no longer exchangeable ;this is an appropriate distribution to use when exchangeability is not a reasonable assumption.

2.The decay function:

In general the decay function mediates how distances between customers affect the resulting distribution over partitions .Function  f is non-increasing , takes non-negative finite values ,and satisfies f(∞)=0。 (衰减函数的性质)

3. Sequential CRPs and the traditional CRP

A sequential CRP is constructed by assuming that dij=∞ for those j>i ,and this guarantees that no customer can be assigned to a later customer.And when f(d)=1 for d≠∞ and dij<∞ for j<i, the sequential CRP is can re-express the traditional CRP.

NOTICE : although these models are the same ,the corresponding Gibbs samplers are different .(why ?)

4. Marginal invariance:

The traditional CRP is marginally invariant : Marginalizing over a particular customer gives the same probability distribution as if  that customer were not included in the model at all .But the DDCRP does not have this property ,and this paper gives us two example of the relevant property of DDCRPS.

Language modeling : a fully observed model

Mixture modeling: a mixture model

5.  Relationship to dependent Dirichlet processes (DDP):(they are both infinite clustering model that models dependencies between the latent component assignments of the data )

The first difference is that the dependent Dirichlet process mixture use the truncations of the stick-breaking representation for approximate posterior inference ,in CONTRAST, the ddCRP mixtures are amenable to Gibbs sampling algorithms . Another difference is that the spirit behind them ,in the DDP, data are drawn from distributions that are similar to distributions of nearby data,and the particular values of the nearby data impose softer constraints than those in the ddCRP.(区分ddCRP与贝叶斯非参数模型)

Distance dependent Chinese Restaurant Processes的更多相关文章

  1. URAL 1962 In Chinese Restaurant 数学

    In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...

  2. Distance Dependent Infinite Latent Feature Model 阅读笔记1

    阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and Dav ...

  3. 中国餐馆过程(Chinese restaurant process)

    也就是说假设空桌子有a0个人,然后顾客选择桌子的概率和桌子上人数成正比. 性质: 改变用户的排列方式,桌子的排列方式,概率不变换.

  4. Marginalize

    在David M.Blei 的Distance Dependent Chinese Restaurant Processes 中提到:DDCRP 的一个重要性质,也是和dependent DP 的一个 ...

  5. 100 Most Popular Machine Learning Video Talks

    100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David ...

  6. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

  7. 关于LDA的文章

    转:http://www.zhizhihu.com/html/y2011/3228.html l  Theory n  Introduction u  Unsupervised learning by ...

  8. Bayesian machine learning

    from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...

  9. R Language

    向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...

随机推荐

  1. 用WPF实现大数据展示,超炫的效果

    开头语 经过一段时间研究,终于实现CS和BS相同效果的大数据展示平台了.首先来看看实现的效果,超炫的效果,客户特别喜欢,个人也非常满意,分享给各位,同大家一起交流学习. 从上图可以看出,分为左中右三栏 ...

  2. python 连接 SQL Server 数据库

    #!/usr/bin/python # -*- coding:utf-8 -*- import pymssql import pyodbc host = '127.0.0.1:1433' user = ...

  3. maven parent 与 import 的区别

    在 maven 配置文件 pom.xml 中可以 引入 <parent>,方式如下(举例是 spring-boot-starter-parent 中的继承关系)   <parent& ...

  4. $CF949D\ Curfew$ 二分/贪心

    正解:二分/贪心 解题报告: 传送门$QwQ$ 首先这里是二分还是蛮显然的?考虑二分那个最大值,然后先保证一个老师是合法的再看另一个老师那里是否合法就成$QwQ$. 发现不太会搞这个合不合法的所以咕了 ...

  5. 星星泡饭-R1SE

    作词 : 吴孤儿 时光不用斟酌 再流淌 摩天轮慢慢地旋转 约定 留下搅拌的星光 赵磊: 媲美哪颗星星的孤寂 是我们 脏不了的心 勇敢 游戏 品尝着很饿的梦境 我的梦想只是梦想 哪怕回音只是气球碰撞 会 ...

  6. 量化投资学习笔记07——python知识补漏

    看<量化投资:以python为工具>这本书,第一部分是python的基础知识.这一部分略读了,只看我还不知道或不熟的. 定义复数 x = complex(2, 5) #2+5j 也可以直接 ...

  7. json查询结果绑定

    M_Hisorder.doQuery = function (){ $("#dataList").empty(); var data = ""; var url ...

  8. RabbitMQ远程调用测试用例

    RabbitMQ远程调用测试,使用外部机器192.168.174.132上的RabbitMQ,使用之前需要对远程调用进行配置,操作过程见博文“解决RabbitMQ远程不能访问的问题”. SendTes ...

  9. 【转】安卓开发经验分享:资源、UI、函数库、测试、构建一个都不能少

    本文由 ImportNew - 唐尤华 翻译自 gigavoice.如需转载本文,请先参见文章末尾处的转载要求. 除了高超的武艺,每位黑忍者还需要装备最好的武器.在软件开发的世界里,好的工具能让我们的 ...

  10. 微信小程序修改checkbox的样式

    修改前: 修改后: wxml代码: <checkbox class="checkbox" /> wxss代码: /* checkbox选中钱样式 */ checkbox ...