Distance dependent Chinese Restaurant Processes
Here is a note of Distance dependent Chinese Restaurant Processes
文章链接http://pan.baidu.com/s/1dEk7ZA5
1. Distance dependent CRPs
In the traditional CRP ,the probability of a customer sitting at a table is computed from the number of other customers already sitting at that table.
Now we introduce the distance dependent CRP, the seating plan probability is described in terms of the probability of a customer sitting with each of the other customers .
let denote the i th customer assignment ,the index of the customer with whom the i th customer is sitting ,let
denote the distance measurement between customers i and j , let D denote the set of all distance measurements between all customers ,and let
be a decay function .
Notice that the customer assignments do not depend on other customer assignment , only the distances between customers.
This distribution is determined by the nature of the distance measurements and the decay function .For many sets of distance measurements ,the resulting distribution over partition is no longer exchangeable ;this is an appropriate distribution to use when exchangeability is not a reasonable assumption.
2.The decay function:
In general the decay function mediates how distances between customers affect the resulting distribution over partitions .Function f is non-increasing , takes non-negative finite values ,and satisfies f(∞)=0。 (衰减函数的性质)
3. Sequential CRPs and the traditional CRP
A sequential CRP is constructed by assuming that dij=∞ for those j>i ,and this guarantees that no customer can be assigned to a later customer.And when f(d)=1 for d≠∞ and dij<∞ for j<i, the sequential CRP is can re-express the traditional CRP.
NOTICE : although these models are the same ,the corresponding Gibbs samplers are different .(why ?)
4. Marginal invariance:
The traditional CRP is marginally invariant : Marginalizing over a particular customer gives the same probability distribution as if that customer were not included in the model at all .But the DDCRP does not have this property ,and this paper gives us two example of the relevant property of DDCRPS.
Language modeling : a fully observed model
Mixture modeling: a mixture model
5. Relationship to dependent Dirichlet processes (DDP):(they are both infinite clustering model that models dependencies between the latent component assignments of the data )
The first difference is that the dependent Dirichlet process mixture use the truncations of the stick-breaking representation for approximate posterior inference ,in CONTRAST, the ddCRP mixtures are amenable to Gibbs sampling algorithms . Another difference is that the spirit behind them ,in the DDP, data are drawn from distributions that are similar to distributions of nearby data,and the particular values of the nearby data impose softer constraints than those in the ddCRP.(区分ddCRP与贝叶斯非参数模型)
Distance dependent Chinese Restaurant Processes的更多相关文章
- URAL 1962 In Chinese Restaurant 数学
In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...
- Distance Dependent Infinite Latent Feature Model 阅读笔记1
阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and Dav ...
- 中国餐馆过程(Chinese restaurant process)
也就是说假设空桌子有a0个人,然后顾客选择桌子的概率和桌子上人数成正比. 性质: 改变用户的排列方式,桌子的排列方式,概率不变换.
- Marginalize
在David M.Blei 的Distance Dependent Chinese Restaurant Processes 中提到:DDCRP 的一个重要性质,也是和dependent DP 的一个 ...
- 100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45, Gaussian Process Basics, David ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
- 关于LDA的文章
转:http://www.zhizhihu.com/html/y2011/3228.html l Theory n Introduction u Unsupervised learning by ...
- Bayesian machine learning
from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse( ...
- R Language
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...
随机推荐
- 简易数据分析 15 | Web Scraper 高级用法——CSS 选择器的使用
这是简易数据分析系列的第 15 篇文章. 年末事情比较忙,很久不更新了,后台一直有读者催更,我看了一些读者给我的私信,发现一些通用的问题,所以单独写篇文章,介绍一些 Web Scraper 的进阶用法 ...
- 最小化centos7.4系统静默安装oracle12.2
一 orace简介 ORACLE(甲骨文)公司.Oracle Database (甲骨文数据库) 是一个具有对象和可扩展标记语言(XML)功能的关系数据库,提供的以分布式数据库为核心的一组软件产品,是 ...
- $Noip2013/Luogu1970$ 花匠 $dp$+思维
$Luogu$ $Sol$ 和$Poj1037\ A\ Decorative\ Fence$好像吖. $f[i][0/1]$表示前$i$个数,且选了第$i$个数,这个数相对于上一个数是下降(上升)的, ...
- linux的指令与文件的搜寻
1.指令路径搜索which 用法:which [-a] command 选项或参数:-a :将所有由 PATH 目录中可以找到的指令均列出,而不止第一个被找到的指令名称 2.文件搜索 (1)wher ...
- 【5min+】你怎么穿着品如的衣服?IEnumerable AND IEnumerator
系列介绍 简介 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的. ...
- curl使用post方式访问Spring Cloud gateway报time out错误
公司老的项目使用是php,要进行重构.其他团队使用php curl函数使用post方式调用Spring Cloud gateway 报time out错误. 但是使用postman测试是没有任何问题, ...
- Java框架之Spring01-IOC-bean配置-文件引入-注解装配
Spring 框架,即framework.是对特定应用领域中的应用系统的部分设计和实现的整体结构.就相当于让别人帮你完成一些基础工作,它可以处理系统很多细节问题,而且框架一般是成熟,稳健的. Spri ...
- 原生javascript 基础动画原理
一.实现原理: 1.开定时器前先清除定时器 2.设置定时器 3.当前元素的位置 + 每一步的长度 4.当元素当前位置超过目标点时,把当前位置==目标点 5.设置元素位置,开始运动 6.判断当前位置如果 ...
- Java StringBuilder类
StringBuilder的原理 String类 字符串是常量,它们的值在创建之后不能更改 字符串的底层是一个被final修饰的数组,不能改变 private final byte[] value; ...
- Spring Boot2 系列教程(二十一) | 自动配置原理
微信公众号:一个优秀的废人.如有问题,请后台留言,反正我也不会听. 前言 这个月过去两天了,这篇文章才跟大家见面,最近比较累,大家见谅下.下班后闲着无聊看了下 SpringBoot 中的自动配置,把我 ...