https://codeforces.com/contest/1311/problem/D

本题题意:给出a,b,c三个数,a<=b<=c;

可以对三个数中任意一个进行+1或-1的操作;

问题:求出最少操作数使这些数满足:b整除a,c整除b

思路:题目中给出abc的范围只有1e4

所以我们可以通过枚举的方式来找出答案;

我们通过枚举b的大小,然后计算在b为k值得情况下,a,c为哪个数最优

暴力枚举出最优情况即可;

细节:在枚举b为k时,对于a,我们可以通过预处理出b的因子,然后枚举因子与原本的数的差值,找出最优即可;

而对于c,有以下情况:

1.对于b>c的情况,我们只需要让c等于b

2.对于c>b的情况,我们有两种可能,1.c已经整除b,这种需要的操作数为0

                 2.c没整除b,所以可能让c减少到为b的倍数,或者增大到b的倍数,两者枚举找操作数小的即可;

所以这道题的做法就是:先预处理出范围内的因子,然后枚举;

代码如下:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define me(a,x) memset(a,x,sizeof a)
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define all(x) (x).begin(), (x).end()
#define pb(a) push_back(a)
#define paii pair<int,int>
#define pali pair<ll,int>
#define pail pair<int,ll>
#define pall pair<ll,ll>
#define fi first
#define se second
vector<int>g[];
int a,b,c;
void inist()
{
for(int i=;i<=;i++){
for(int j=;j<=/i;j++)
g[i*j].pb(i);
} }
int work(int& aa,int bb,int& cc)
{
int ans=;
int minn=;
int l=g[bb].size();
int x=aa;
for(int i=;i<l;i++){
if(minn>abs(g[bb][i]-aa)){
minn=abs(g[bb][i]-aa);
x=g[bb][i];
}
}
aa=x;
ans+=minn;
if(bb>cc){
ans+=abs(bb-cc);
cc=bb;
}
if(cc%bb<bb-cc%bb){
ans+=cc%bb;
cc-=cc%bb;
}
else{
ans+=bb-cc%bb;
cc+=bb-cc%bb;
}
return ans;
}
int main()
{
inist();
int t;
cin>>t;
while(t--){
int ans=;
int ansa,ansb,ansc;
cin>>a>>b>>c;
for(int i=;i<=;i++){
int a1=a,b1=i,c1=c;
int temp=abs(i-b);
temp+=work(a1,b1,c1);
if(temp<ans){
ans=temp;
ansa=a1;ansb=b1;ansc=c1;
}
}
cout<<ans<<endl;
cout<<ansa<<" "<<ansb<<" "<<ansc<<endl;
}
return ;
}

D - Three Integers的更多相关文章

  1. [LeetCode] Sum of Two Integers 两数之和

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  2. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  3. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  4. Leetcode Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...

  5. LeetCode Sum of Two Integers

    原题链接在这里:https://leetcode.com/problems/sum-of-two-integers/ 题目: Calculate the sum of two integers a a ...

  6. Nim Game,Reverse String,Sum of Two Integers

    下面是今天写的几道题: 292. Nim Game You are playing the following Nim Game with your friend: There is a heap o ...

  7. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  8. LeetCode 371. Sum of Two Integers

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  9. leetcode-【中等题】Divide Two Integers

    题目 Divide two integers without using multiplication, division and mod operator. If it is overflow, r ...

  10. 解剖SQLSERVER 第十三篇 Integers在行压缩和页压缩里的存储格式揭秘(译)

    解剖SQLSERVER 第十三篇    Integers在行压缩和页压缩里的存储格式揭秘(译) http://improve.dk/the-anatomy-of-row-amp-page-compre ...

随机推荐

  1. 1994_An Algorithm To Reconstruct Wideband Speech From Narrowband Speech Based On Codebook Mapping

    论文地址:基于码本映射的窄带语音宽带重建算法 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12144324.html 摘要 本文提出了一种从窄带 ...

  2. Sublime text3的安装以及python开发环境的搭建

    作者:struct_mooc 博客地址:https://www.cnblogs.com/structmooc/p/12376601.html 一. Sublime text3的安装 1.sublime ...

  3. 下拉菜单的jquery组件封装

    首先晒出封装好的dropdown.js (function($){ 'use strict';//使用严格模式 //构造函数形式 function Dropdown(elem,options){ // ...

  4. 解读前端js中签名算法伪造H5游戏加分

    信息安全在我们日常开发中息息相关,稍有忽视则容易产生安全事故.对安全测试也提出更高要求.以下是笔者亲自实践过程: 一. 打开某个数钱游戏HTML5页面,在浏览器 F12 开发工具中,查看的js,如下, ...

  5. android 华为、魅族手机无法打印 Log 日志的问题

    最近使用魅族真机测试 App 时,发现 LogCat 不显示项目工程中通过Log.d()和Log.v()打印的 debug 和 verbose 级别的日志,甚是奇怪,通过 debug 模式断点调试也没 ...

  6. python命令行运行django项目, can't open file 'manage.py' 问题解决

     找到manage.py的绝对路径即可运行

  7. PHP0021:PHP COOKIE 设置修改删除

  8. JavaScript 浅复制和深复制

    浅复制只会复制第一层的元素,嵌套的元素还是原来的引用. const obj = { a: 1, b: 2 } const copyObj = Object.assign({}, obj) const ...

  9. es5和es6中如何处理不确定参数

    场景:求出不定参数的总数和 //利用arguments function sum () { let num = 0 //Array.prototype.forEach.call(arguments,f ...

  10. D. Domino for Young

    基本思想是利用涂色的方法,用黑白两种颜色把方格全部涂色,相邻方格不同色. 方法1:基于二分图匹配的思想 一开始也想过二分图匹配,但数据量太大,就放弃了这种想法.其实根据增广路的定义.如果白色的方格的数 ...