LeetCode 343.整数拆分 - JavaScript
题目描述:给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
题目分析
题目中“n 至少可以拆分为两个正整数的和”,这个条件说明了 n 是大于 1 的整数。
对 7 来说,可以拆成 3+4,最大乘积是 12。
对 8 来说,可以拆成 3+3+2,最大乘积是 18。
解法 1: 动态规划
状态数组dp[i]
表示:数字 i 拆分为至少两个正整数之和的最大乘积。为了方便计算,dp 的长度是 n + 1,值初始化为 1。
显然dp[2]
等于 1,外层循环从 3 开始遍历,一直到 n 停止。内层循环 j 从 1 开始遍历,一直到 i 之前停止,它代表着数字 i 可以拆分成 j + (i - j)。但 j * (i - j)
不一定是最大乘积,因为i-j
不一定大于dp[i - j]
(数字i-j
拆分成整数之和的最大乘积),这里要选择最大的值作为 dp[i]
的结果。
空间复杂度是 \(O(N)\),时间复杂度是 \(O(N^2)\)。代码实现如下:
// ac地址:https://leetcode-cn.com/problems/integer-break/
// 原文地址:https://xxoo521.com/2020-02-15-integer-break/
/**
* @param {number} n
* @return {number}
*/
var integerBreak = function(n) {
const dp = new Array(n + 1).fill(1);
for (let i = 3; i <= n; ++i) {
for (let j = 1; j < i; ++j) {
dp[i] = Math.max(dp[i], j * (i - j), j * dp[i - j]);
}
}
return dp[n];
};
解法 2: 贪心法
力扣上此题给出了提示:多试试几个例子,找出规律。下面说下我找规律的思路。
前面提到:8 拆分为 3+3+2,此时乘积是最大的。然后就推测出来一个整数,要拆成多个 2 和 3 的和,保证乘积最大。原理很容易理解,因为 2 和 3 可以合成任何数字,例如5=2+3
,但是5 < 2*3
;例如6=3+3
,但是6<3*3
。所以根据贪心算法,就尽量将原数拆成更多的 3,然后再拆成更多的 2,保证拆出来的整数的乘积结果最大。
但上面的解法还有不足。如果整数 n 的形式是 3k+1,例如 7。按照上面规则,会拆分成“3 + 3 + 1”。但是在乘法操作中,1 是没作用的。此时,应该将 1 和 3 变成 4,也就是“3 + 3 + 1”变成“3 + 4”。此时乘积最大。
综上所述,算法的整体思路是:
- n 除 3 的结果为 a,余数是 b
- 当 b 为 0,直接将 a 个 3 相乘
- 当 b 为 1,将(a-1)个 3 相乘,再乘以 4
- 当 b 为 2,将 a 个 3 相乘,再乘以 2
空间复杂度是 O(1),时间复杂度是 O(1)。代码实现如下:
// ac地址:https://leetcode-cn.com/problems/integer-break/
// 原文地址:https://xxoo521.com/2020-02-15-integer-break/
/**
* @param {number} n
* @return {number}
*/
var integerBreak = function(n) {
if (n === 2) return 1;
if (n === 3) return 2;
// a的含义:n能拆成的3的个数
const a = Math.floor(n / 3);
const b = n % 3;
// n是3的倍数
if (b === 0) return Math.pow(3, a);
// n是 3k + 1,例如7。拆成3、3、1。由于有1对结果无法有贡献,所以最后的3、1换成4
if (b === 1) return Math.pow(3, a - 1) * 4;
return Math.pow(3, a) * 2;
};
如果想了解详细的数学推理,请参考《Leetcode 343:整数拆分(最详细的解法!!!)》。
更多资料
-
LeetCode 343.整数拆分 - JavaScript的更多相关文章
- LeetCode 343. 整数拆分(Integer Break) 25
343. 整数拆分 343. Integer Break 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 每日一算法2019/5/2 ...
- Java实现 LeetCode 343 整数拆分(动态规划入门经典)
343. 整数拆分 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × ...
- leetcode 343 整数拆分
1.这个题拿到之后没有什么思路,此时就应该考虑暴力法.然而每次不知道要拆成几份,没办法用循环,所以想到用递归. 如图所示进行递归,显然有很多重复的计算,所以用自底向上的动态规划. 2.还有一个问题就是 ...
- 前端与算法 leetcode 7. 整数反转
目录 # 前端与算法 leetcode 7. 整数反转 题目描述 概要 提示 解析 解法 算法 传入测试用例的运行结果 执行结果 GitHub仓库 # 前端与算法 leetcode 7. 整数反转 题 ...
- HDU 4651 Partition(整数拆分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){ f[0 ...
- LightOJ 1336 Sigma Function(数论 整数拆分推论)
--->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. ...
- LightOJ 1341 Aladdin and the Flying Carpet(整数拆分定理)
分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e ...
- HDU1028 (整数拆分)
Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- LeetCode:整数转罗马数字【12】
LeetCode:整数转罗马数字[12] 题目描述 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 10 ...
随机推荐
- Mysql 性能优化Explain详解
explain 功能我们在日常使用中,使用慢查询找到执行时间比较久的查询,然后使用SHOW STATUS.SHOW PROFILE.和explain做单条语句的分析.使用explain关键字可以模拟优 ...
- CCPC-Wannafly Winter Camp Day1 (Div2 ABCFJ) 待补...
Day1 Div2 场外链接 按题目顺序~ A 机器人 传送门 题意:有两条平行直线A.B,每条直线上有n个点,编号为1~n.在同一直线上,从a站点到b站点耗时为两点间的距离.存在m个特殊站点,只有在 ...
- 深入理解协程(二):yield from实现异步协程
原创不易,转载请联系作者 深入理解协程分为三部分进行讲解: 协程的引入 yield from实现异步协程 async/await实现异步协程 本篇为深入理解协程系列文章的第二篇. yield from ...
- Download EditPlus Text Editor
突然发现EditPlus还是很强大的,很好用,破解也很方便,有个牛人做了在线生成验证码,只能说服!! 下边把官网的最新下载地址贴出,当然还有在线生成验证码喽. EditPlus Text Editor ...
- 原生js面向对象编程-选项卡(点击)
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- matplotlib 折线图
1.基本要点 # 导入模块 from matplotlib import pyplot as plt # x轴数据 x = range(2, 26, 2) # y轴数据 y = [15, 13, 14 ...
- Exception in thread "main" java.lang.AbstractMethodError: org.springframework.boot.context.config.ConfigFileApplicationListener.supportsSourceType(Ljava/lang/Class;)Z
依赖冲突,查看pom.xml文件 查看parent项目的依赖版本为 <parent> <groupId>org.springframework.boot</groupId ...
- ubuntu系统下载后的.deb软件安装命令
查看某个软件是否安装,比如查看QQ软件是否安装并列出软件包名: dpkg -l | grep qq 删除某款软件:sudo dpkg -r 软件包名 安装软件 : sudo dpkg -i *.deb
- Ubuntu中部署Django项目的配置与链接MySQL
Django的简介 MVT模式的介绍创建项目的虚拟环境 本次使用的是pip安装 一.更新 sudo apt update 二.安装pip sudo apt install python3-pip 三. ...
- 什么是LakeHouse?
1. 引入 在Databricks的过去几年中,我们看到了一种新的数据管理范式,该范式出现在许多客户和案例中:LakeHouse.在这篇文章中,我们将描述这种新范式及其相对于先前方案的优势. 数据仓库 ...
- LeetCode 343. 整数拆分(Integer Break) 25