【学术篇】SDOI2017 数字表格
传送门==在里面====
去年忘记可以预处理了... 然后就打了10pts的暴力... 现在学了莫比乌斯反演就可以来做了
这个题目看着非常的简单, 就是要求这个式子
\]
这个式子虽然是\(\prod\)而不是\(\sum\), 但是还有个gcd, 我们也可以试着化出一个莫比乌斯反演的形式.
我们按照往常的套路来枚举gcd.
\]
然后指数上这一坨东西我们很熟悉了, 我们得到过一个结论就是
\]
所以就有
\]
然后令\(t=xd\), 就可以化成这个样纸
\]
这样括号外面我们会枚举分块, 只要把前缀和改成前缀积就ok了. 但是括号里面呢?
这个形式没见过啊, 好像筛法也没有筛这种东西的.
但是直觉告诉我们里面的这个东西好像不是很大, 可能大约是在\(O(n*log_2\sqrt n)=O(nlogn)\)级别的?
然后事实证明确实是差不多这样的(luogu题解里面说大约是15n左右), 所以我们做一波预处理就ok了.
这样总复杂度似乎差不多就是\(O(n+nlogn+q\sqrt n)\)的, 不知道算的对不对..大概写O(能过)会更科学一点??
然后就是代码了...
#include <cmath>
#include <cstdio>
const int N=1e6+6;
const int P=1e9+7;
int prime[N],mu[N],f[N],g[N],F[N],tot;
bool notp[N];
inline int gn(int a=0,char c=0){
for(;c<'0'||c>'9';c=getchar());
for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
template<class T>
inline T min(const T&a,const T&b){
return a<b?a:b;
}
inline int qpow(int a,int b,int s=1){
for(;b;b>>=1,a=1LL*a*a%P)
if(b&1) s=1LL*s*a%P;
return s;
}
void shai(int n){
f[1]=mu[1]=notp[1]=F[0]=F[1]=1;
for(int i=2;i<=n;++i){
f[i]=(f[i-1]+f[i-2])%P; F[i]=1;
if(!notp[i])prime[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*prime[j]<n;++j){
int k=i*prime[j]; notp[k]=1;
if(i%prime[j]==0){mu[k]=0;break;}
else mu[k]=-mu[i];
}
}
for(int i=1;i<=n;++i)
for(int j=i;j<=n;j+=i)
if(mu[j/i]) F[j]=1LL*F[j]*(mu[j/i]==1?f[i]:qpow(f[i],P-2))%P;
for(int i=2;i<=n;++i)
F[i]=1LL*F[i-1]*F[i]%P;
}
int solve(int n,int m){
int ans=1,last,mn=min(n,m);
for(int i=1;i<=mn;i=last+1){
last=min(n/(n/i),m/(m/i));
ans=1LL*ans*qpow(1LL*F[last]*qpow(F[i-1],P-2)%P,
1LL*(n/i)*(m/i)%(P-1))%P;
}
return (ans%P+P)%P;
}
int main(){ shai(1e6);
int T=gn(),m,n;
while(T--)
n=gn(),m=gn(),
printf("%d\n",solve(n,m));
}
哦 对了 还有一件事就是根据费马小定理, \(G^{(P-1)}\equiv1(mod\ p)\), 所以外面的指数对\((p-1)\)取模就好了...
【学术篇】SDOI2017 数字表格的更多相关文章
- 题解-[SDOI2017]数字表格
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
- P3704 [SDOI2017]数字表格
P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- [SDOI2017]数字表格 & [MtOI2019]幽灵乐团
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- [SDOI2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
随机推荐
- USACO 2001 OPEN earthquake /// 最优比例生成树
题目大意: https://www.cnblogs.com/forever97/p/3603572.html 讲解:https://www.jianshu.com/p/d40a740a527e 题解: ...
- Til the Cows Come Home(spfa做法)
题目题目描述贝茜在谷仓外的农场上,她想回到谷仓,在第二天早晨农夫约翰叫她起来挤奶之前尽可能多地睡上一觉.由于需要睡个好觉,贝茜必须尽快回到谷仓.农夫约翰的农场上有N(2≤N≤1000)个路标,每一个路 ...
- SSD 坏了
系统盘是SSD,系统盘坏了. 桌面所有数据都拿不回来了. 真的无奈啊,来吧,统计一下,有多少东西要重装. VS2008.VS2010.VS2013.VS2015. GITHUB.SVN.VMWare. ...
- 新学MyBatis
今天学习了Mybatis入门,将知识归纳一下: 创建一个java项目之后,想使用myBatis需要完成一下几个步骤: 1.先导jar包 2.写model文件 () 3.写全局配置文件 SqlMapCo ...
- 随笔记录 shell脚本相关内容 2019-8-26
字符串截取: 假设变量为var=http://www.hao.com/123.htm1. # 号截取,删除左边字符,保留右边字符.echo ${var#*//}其中 var 是变量名,# 号是运算符, ...
- Mysql ibd恢复(delete 数据)
转载:https://www.linuxidc.com/Linux/2017-05/143870.htm 首先呢,请各位注意Percona Data Recovery Tool for InnoDB工 ...
- leetcood学习笔记-404-左叶子之和
题目描述: 方法一:递归 class Solution: def sumOfLeftLeaves(self, root: TreeNode) -> int: if not root: retur ...
- 欧拉函数+反演——2019hdu多校6588
\[ 求\sum_{i=1}^{n}(\sqrt[3]i,i)\\ 首先转化一下这个式子,考虑对于i\in[j^3,(j+1)^3-1],\sqrt[3]i=j\\ 所以可以枚举所有j,然后对i\in ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- Feign Request header is too large
Feign远程调用时数据量过大报错 看异常提示猜测Feign在请求其他服务时,将数据存在了header,导致数据量过大报错 MultiValueMap<String, String> pa ...