【学术篇】SDOI2017 数字表格
传送门==在里面====
去年忘记可以预处理了... 然后就打了10pts的暴力... 现在学了莫比乌斯反演就可以来做了
这个题目看着非常的简单, 就是要求这个式子
\]
这个式子虽然是\(\prod\)而不是\(\sum\), 但是还有个gcd, 我们也可以试着化出一个莫比乌斯反演的形式.
我们按照往常的套路来枚举gcd.
\]
然后指数上这一坨东西我们很熟悉了, 我们得到过一个结论就是
\]
所以就有
\]
然后令\(t=xd\), 就可以化成这个样纸
\]
这样括号外面我们会枚举分块, 只要把前缀和改成前缀积就ok了. 但是括号里面呢?
这个形式没见过啊, 好像筛法也没有筛这种东西的.
但是直觉告诉我们里面的这个东西好像不是很大, 可能大约是在\(O(n*log_2\sqrt n)=O(nlogn)\)级别的?
然后事实证明确实是差不多这样的(luogu题解里面说大约是15n左右), 所以我们做一波预处理就ok了.
这样总复杂度似乎差不多就是\(O(n+nlogn+q\sqrt n)\)的, 不知道算的对不对..大概写O(能过)会更科学一点??
然后就是代码了...
#include <cmath>
#include <cstdio>
const int N=1e6+6;
const int P=1e9+7;
int prime[N],mu[N],f[N],g[N],F[N],tot;
bool notp[N];
inline int gn(int a=0,char c=0){
for(;c<'0'||c>'9';c=getchar());
for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
template<class T>
inline T min(const T&a,const T&b){
return a<b?a:b;
}
inline int qpow(int a,int b,int s=1){
for(;b;b>>=1,a=1LL*a*a%P)
if(b&1) s=1LL*s*a%P;
return s;
}
void shai(int n){
f[1]=mu[1]=notp[1]=F[0]=F[1]=1;
for(int i=2;i<=n;++i){
f[i]=(f[i-1]+f[i-2])%P; F[i]=1;
if(!notp[i])prime[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*prime[j]<n;++j){
int k=i*prime[j]; notp[k]=1;
if(i%prime[j]==0){mu[k]=0;break;}
else mu[k]=-mu[i];
}
}
for(int i=1;i<=n;++i)
for(int j=i;j<=n;j+=i)
if(mu[j/i]) F[j]=1LL*F[j]*(mu[j/i]==1?f[i]:qpow(f[i],P-2))%P;
for(int i=2;i<=n;++i)
F[i]=1LL*F[i-1]*F[i]%P;
}
int solve(int n,int m){
int ans=1,last,mn=min(n,m);
for(int i=1;i<=mn;i=last+1){
last=min(n/(n/i),m/(m/i));
ans=1LL*ans*qpow(1LL*F[last]*qpow(F[i-1],P-2)%P,
1LL*(n/i)*(m/i)%(P-1))%P;
}
return (ans%P+P)%P;
}
int main(){ shai(1e6);
int T=gn(),m,n;
while(T--)
n=gn(),m=gn(),
printf("%d\n",solve(n,m));
}
哦 对了 还有一件事就是根据费马小定理, \(G^{(P-1)}\equiv1(mod\ p)\), 所以外面的指数对\((p-1)\)取模就好了...
【学术篇】SDOI2017 数字表格的更多相关文章
- 题解-[SDOI2017]数字表格
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
- P3704 [SDOI2017]数字表格
P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- [SDOI2017]数字表格 & [MtOI2019]幽灵乐团
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- [SDOI2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
随机推荐
- 【React-Native】---Android环境配置
一.前言 本文主要内容是在Window系统下配置Android APP的开发环境,要配置RN的Android开发环境需要3个依赖 1.JDK(版本必须是 1.8) 2.Node(版本必须高于8.3) ...
- JQuery中内容操作函数、validation表单校验
JQuery:内容体拼接(可以直接拼接元素节点和内容节点) JQuery实现: 方案1:A.append(B); == B.appendTo(A);A的后面拼接B 方案2: A.prepend(B); ...
- 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)
[解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...
- Unity中动态绘制圆柱体
问题背景 上次写了动态绘制立方体,这最近又来了新功能,绘制圆柱(风筒),要求是给了很多节点,根据节点去动态绘制风筒,风筒就是圆柱连接而成的,可以理解为管道,还有就是拐角处注意倒角,圆润过度过来. 实现 ...
- Linux文件介绍
Linux文件介绍 Linux 文件属性 可以通过命令ll+文件名,查看文件的具体属性 例如:ll syz.gz 1736706 -rw-r--r--. 1 root root 28 Oct 27 1 ...
- html-基础知识二
form 功能:向服务器传输数据,实现用户和web 服务器的交互 一.表单属性 accept-charset: 规定在提交表单中使用的字符集 action:规定向何处提交表单地址(url) autoc ...
- redis String 相关命令
- 【学术篇】CF935E Fafa and Ancient Mathematics 树形dp
前言 这是一道cf的比赛题.. 比赛的时候C题因为自己加了一个很显然不对的特判WA了7次但找不出原因就弃疗了... 然后就想划水, 但是只做了AB又不太好... 估计rating会掉惨 (然而事实证明 ...
- easyui 弹出框调用外部js函数 提示“Microsoft JScript 运行时错误: 缺少对象”
昨天遇见一个很诡异的问题 我用easyui做了一个网站,其中有一个a页面和一个b页面,我通过easyui的window功能,在a页面中弹出了一个b页面,在b页面中,我用到了一个外部js的函数c,我在b ...
- CSIC_716_20191129【面向对象高级----反射、类的内置方法(魔法方法)、单例模式】
反射 反射是通过'字符串'对 对象的属性进行操作,反射有四个内置的方法. hasattr 通过字符串 判断对象的属性或者方法是否存在 getattr 通过字符串 获取对象的属性或者方法 ...