@description@

老 C 是个程序员。

作为一个懒惰的程序员,老 C 经常在电脑上玩方块游戏消磨时间。游戏被限定在一个由小方格排成的 R 行 C 列网格上,如果两个小方格有公共的边,就称它们是相邻的,而且有些相邻的小方格之间的公共边比较特殊。

特殊的公共边排列得有很强的规律。首先规定,第 1 行的前两个小方格之间的边是特殊边。然后,特殊边在水平方向上每 4 个小方格为一个周期,在竖直方向上每 2 个小方格为一个周期。所有的奇数列与下一列之间都有特殊边,且所在行的编号从左到右奇偶交替。

下图所示是一个 R = C = 8 的网格,蓝色标注的边是特殊边。

首先,在第 1 行,第 1 列和第 2 列之间有一条特殊边。因为竖直方向周期为 2,所以所有的奇数行,第 1 列和第 2 列之间都有特殊边。因为水平方向周期为 4,所以所有奇数行的第 5 列和第 6 列之间也有特殊边,如果网格足够大,所有奇数行的第 9 列和第 10 列、第 13 列和第 14 列之间都有特殊边。

因为所有的奇数列和下一列之间都有特殊边,所以第 3 列和第 4 列、第 7 列和第 8 列之间也有特殊边,而所在行的编号从左到右奇偶交替,所以它们的特殊边在偶数行。如果网格的规模更大,我们可以用同样的方法找出所有的特殊边。

网格的每个小方格刚好可以放入一个小方块,在游戏的一开始,有些小方格已经放上了小方块,另外的小方格没有放。

老 C 很讨厌下图所示的图形,如果他发现有一些小方块排列成了它讨厌的形状(特殊边的位置也要如图中所示),就很容易弃疗,即使是经过任意次旋转、翻转后排列成讨厌的形状,老 C 也同样容易弃疗。

为了防止弃疗,老 C 决定趁自己还没有弃疗,赶紧移除一些格子里小方块,使得剩下的小方块不能构成它讨厌的形状。但是游戏里每移除一个方块都是要花费一些金币的,每个方块需要花费的金币有多有少参差不齐。老 C 当然希望尽可能少的使用游戏里的金币,但是最少要花费多少金币呢?老 C 懒得思考,就把这个问题交给你了。

输入格式

第一行有 3 个正整数 C, R, n,表示 C 列 R 行的网格中,有 n 个小方格放了小方块。

接下来 n 行,每行 3 个正整数 x, y, w,表示在第 x 列第 y 行的小方格里放了小方块,移除它需要花费 w 个金币。保证不会重复,且都在网格范围内。

输出格式

输出一行,包含一个整数,表示最少花费的金币数量。

样例

样例输入 1

2 2 4

1 1 5

1 2 6

2 1 7

2 2 8

样例输入 1

5

样例输入 2

3 3 7

1 1 10

1 2 15

1 3 10

2 1 10

2 2 10

2 3 10

3 1 10

样例输出 2

15

数据范围与提示

1 <= C, R, n <= 10^5, 1 <= w <= 10^4。

@solution@

题意绕晕人.jpg。

但实际上有用的信息全在图片里面 2333。

假如第 x 列第 y 行的 (x, y) 与 (x + 1, y) 同时存在,且它们之间有特殊边(即图片上的蓝色边),则必须要从如下的几种选择中选择一种:

(1)删除 (x, y) 或 (x + 1, y)(这个地方显然是选择删除费用较小的那个)。

(2)删除 (x, y) 周围除了 (x + 1, y) 以外相邻的 3 个 (x - 1, y), (x, y - 1), (x, y + 1)(如果它们存在)。

(3)删除 (x + 1, y) 周围除了 (x, y) 以外相邻的 3 个 (x + 2, y), (x + 1, y - 1), (x + 1, y + 1)(如果它们存在)。

“必须从几种选择中选择一种” 并且求最小花费,联想到最小割。

考虑将那些与特殊边不相邻的点拿出来,进行黑白染色(这里的染色不是平常的相邻染成异色,而是上面所说的 (x, y) 周围的三个点染成同色,(x + 1, y) 周围三个点染成同色,且 (x, y) 与 (x + 1, y) 周围的点为异色)。

将源点连黑点,容量为题目中所说的 w;将白点连汇点,容量为题目中所说的 w。

假如第 x 列第 y 行的 (x, y) 与 (x + 1, y) 同时存在,则 (x, y) 和 (x + 1, y) 之间连边,容量为 min(w1, w2)(分别表示两个格子删除的费用),方向看它们周围的格子颜色是什么:如果 (x, y) 与黑色相邻则 (x, y) -> (x + 1, y);否则 (x + 1, y) -> (x, y)。

然后周围的黑点向它相邻的点连,它们向周围的白点连边,容量都为 inf。

可以发现这样连出来是可以满足我们所需要的限制。

不要问我为什么 10^5 跑得过,问就是形而上学。

@accepted code@

#include<map>
#include<cstdio>
#include<iostream>
using namespace std;
typedef pair<int, int> pii;
const int MAXN = 100000;
const int MAXV = 2*MAXN;
const int MAXE = 20*MAXV;
const int INF = int(1E9);
const pii d1[] = {make_pair(0, 1), make_pair(0, -1), make_pair(1, 0)};
const pii d2[] = {make_pair(0, 1), make_pair(0, -1), make_pair(-1, 0)};
struct Graph{
struct edge{
edge *nxt, *rev;
int to, cap, flow;
}edges[MAXE + 5], *adj[MAXV + 5], *ecnt;
int s, t, d[MAXV + 5], vd[MAXV + 5];
void init() {ecnt = &edges[0];}
void addedge(int u, int v, int c) {
edge *p = (++ecnt), *q = (++ecnt);
p->to = v, p->cap = c, p->flow = 0;
p->nxt = adj[u], adj[u] = p;
q->to = u, q->cap = 0, q->flow = 0;
q->nxt = adj[v], adj[v] = q;
p->rev = q, q->rev = p;
// printf("! %d %d %d\n", u, v, c);
}
int aug(int x, int tot) {
if( x == t ) return tot;
int sum = 0, mind = t + 1;
for(edge *p=adj[x];p;p=p->nxt) {
if( p->cap != p->flow ) {
if( d[p->to] + 1 == d[x] ) {
int del = aug(p->to, min(tot - sum, p->cap - p->flow));
p->flow += del, p->rev->flow -= del, sum += del;
if( sum == tot || d[s] == t + 1 ) return sum;
}
mind = min(mind, d[p->to]);
}
}
if( sum == 0 ) {
vd[d[x]]--;
if( vd[d[x]] == 0 ) {
d[s] = t + 1;
return sum;
}
d[x] = mind + 1;
vd[d[x]]++;
}
return sum;
}
int max_flow(int _s, int _t) {
s = _s, t = _t;
int flow = 0;
while( d[s] != t + 1 )
flow += aug(s, INF);
return flow;
}
}G;
map<pii, int>mp;
int C, R, n;
pii p[MAXN + 5]; int w[MAXN + 5];
int func(pii p) {
if( p.second & 1 ) return (p.first - 1) % 4;
else return (p.first - 1) % 4 + 4;
}
int main() {
scanf("%d%d%d", &C, &R, &n), G.init();
for(int i=1;i<=n;i++)
scanf("%d%d%d", &p[i].first, &p[i].second, &w[i]), mp[p[i]] = i;
int s = n + 1, t = n + 2;
for(int i=1;i<=n;i++) {
int type = func(p[i]);
if( type == 4 || type == 3 )
G.addedge(s, i, w[i]);
if( type == 5 || type == 2 )
G.addedge(i, t, w[i]);
if( type == 0 ) {
if( mp.count(make_pair(p[i].first + 1, p[i].second)) ) {
int j = mp[make_pair(p[i].first + 1, p[i].second)];
G.addedge(i, j, min(w[i], w[j]));
for(int k=0;k<3;k++)
if( mp.count(make_pair(p[j].first + d1[k].first, p[j].second + d1[k].second)) )
G.addedge(j, mp[make_pair(p[j].first + d1[k].first, p[j].second + d1[k].second)], INF);
for(int k=0;k<3;k++)
if( mp.count(make_pair(p[i].first + d2[k].first, p[i].second + d2[k].second)) )
G.addedge(mp[make_pair(p[i].first + d2[k].first, p[i].second + d2[k].second)], i, INF);
}
}
if( type == 6 ) {
if( mp.count(make_pair(p[i].first + 1, p[i].second)) ) {
int j = mp[make_pair(p[i].first + 1, p[i].second)];
G.addedge(j, i, min(w[i], w[j]));
for(int k=0;k<3;k++)
if( mp.count(make_pair(p[j].first + d1[k].first, p[j].second + d1[k].second)) )
G.addedge(mp[make_pair(p[j].first + d1[k].first, p[j].second + d1[k].second)], j, INF);
for(int k=0;k<3;k++)
if( mp.count(make_pair(p[i].first + d2[k].first, p[i].second + d2[k].second)) )
G.addedge(i, mp[make_pair(p[i].first + d2[k].first, p[i].second + d2[k].second)], INF);
}
}
}
printf("%d\n", G.max_flow(s, t));
}

@details@

注意!它题目中说的是!第 x 列第 y 行!!!

被这个题意卡到自闭。以为自己读懂了结果样例一看好像不大对。。。

@loj - 3022@ 「CQOI2017」老 C 的方块的更多相关文章

  1. [LOJ#3022][网络流]「CQOI2017」老 C 的方块

    题目传送门 定义有特殊边相邻的格子颜色为黑,否则为白 可以看出,题目给出的限制条件的本质是如果两个小方块所在的格子 \(x\) 和 \(y\) 为两个相邻的黑格,那么 \(x\) 和 \(y\) 之间 ...

  2. 【LOJ】#3020. 「CQOI2017」小 Q 的表格

    #3020. 「CQOI2017」小 Q 的表格 这个的话求出来\(g = gcd(a,b)\) 会修改所有gcd为g的位置 我们要求\((g,g)\)这个位置的数一定是\(g^{2}\)的倍数 之后 ...

  3. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  4. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  5. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  6. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  9. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

随机推荐

  1. easyui combobox下拉框中显示大于号小于号的问题

    前两天同事做了个功能,通过勾选下拉框里的值进行列表查询,结果下拉框里的值是“0<t<=2”.“2<t<=5”.“t>5”这样的. combobox是用脚本渲染出来的,里面 ...

  2. 【weex】publishTask

    这个小项目还挺有意思的,是一个效果取快递的项目 我们看下效果 放博客的github地址:https://github.com/xiaomaer/publishTask 我们来看下代码,这几个页面运行的 ...

  3. UE4物理模块(一)---概述与可视化调试

    UE4.21前的版本采用的是NVIDIA的PhysX做为其默认的物理引擎,用于计算3D世界的碰撞查询与物理模拟.自4.21版本开始改物理调用接口,但这并不是闲来重构代码,果然在2019GDC大会上放出 ...

  4. Javascript实现信息滚动效果的方法

    <html><head><meta http-equiv="Content-Type" content="text/html; charse ...

  5. 【教程】5分钟在PAI算法市场发布自定义算法

    概述 在人工智能领域存在这样的现象,很多用户有人工智能的需求,但是没有相关的技术能力.另外有一些人工智能专家空有一身武艺,但是找不到需求方.这意味着在需求和技术之间需要一种连接作为纽带. 今天PAI正 ...

  6. 【JZOJ3299】【SDOI2013】保护出题人 三分+凸壳

    题面 ​出题人铭铭认为给SDOI2012 出题太可怕了,因为总要被骂,于是他又给SDOI2013 出题了. 参加SDOI2012 的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013 ...

  7. oracle 写存储过程有返回值时 注意在loop循环处添加返回值:=

    例子: create or replace procedure p_xl is v_count NUMBER(10); begin for rs in(select yhbh from dbyh) l ...

  8. Python 正则表达式语法实例

  9. LDAP Authentication Handler

    Including the Handler In the pom.xml file for your CAS Maven2 WAR Overlay, add the following depende ...

  10. GeoServer手动发布本地Shapefile地图

    首先,本文实现的结果图给大家展现一下: 放大的样子: 颜色是通过属性中某个字段值来分级的,可以自定义. 上面功能是用ArcGIS切片好数据,在Geoserver 中发布,并用google地图作为底图展 ...