Luogu2345 | 奶牛集会 (树状数组)
题目背景
MooFest, 2004 Open
题目描述
约翰的 \(N\) 头奶牛每年都会参加“哞哞大会”。哞哞大会是奶牛界的盛事。集会上的活动很多,比如堆干草,跨栅栏,摸牛仔的屁股等等。它们参加活动时会聚在一起,第i 头奶牛的坐标为 \(Xi\),没有两头奶牛的坐标是相同的。奶牛们的叫声很大,第i 头和第j 头奶牛交流,会发出 \(max[Vi,Vj]×|Xi−Xj|\) 的音量,其中 \(Vi\) 和 \(Vj\) 分别是第 \(i\) 头和第 \(j\) 头奶牛的听力。
假设每对奶牛之间同时都在说话,请计算所有奶牛产生的音量之和是多少。
输入格式
• 第一行:单个整数 \(N\) \((1 ≤ N ≤ 20000)\)
• 第二行到第N + 1 行:第i + 1 行有两个整数 \(Vi\) 和 \(Xi\) (\(1 ≤ Vi ≤ 20000,1 ≤ Xi ≤ 20000\))
输出格式
• 单个整数:表示所有奶牛产生的音量之和
输入输出样例
输入 #1
4
3 1
2 5
2 6
4 3
输出 #1
57
————————————————————————————————————
音量的计算公式 \(max[Vi,Vj]×|Xi−Xj|\) 看起来很友好,
由于奶牛两两之间都会发出声音,很容易想到先将奶牛按 \(Vi\) 升序排序,之后每遍历到一只奶牛,就计算这只奶牛与此前出现的所有奶牛发出的音量,统计进答案中即可。
这样我们需要求的就是当前奶牛与此前出现的所有奶牛的距离之和,即 \(\sum_{j=1}^{i-1}dis(i,j)\)
上面的这个式子是 \(O(N^2)\) 的,而我们需要在 \(O(logn)\) 的时间内解决,所以可以使用支持单点修改和区间查询的树状数组优化,
这里使用了两个树状数组,分别存储了奶牛的个数和奶牛的坐标和(即到原点的距离和)
接下里我们把坐标小于当前奶牛和坐标大于当前奶牛的分开处理,具体计算公式请见代码。
最后别忘了把这个值乘上当前奶牛的 \(Vi\)再 统计进答案,之后还要把当前奶牛的数值加入两个树状数组中。
PS:还要开\(long long\)。
代码如下:
#include <bits/stdc++.h>
#define FOR(i,s,t) for (ll (i)=(s);(i)<=(t);(i)++)
#define lowbit(x) ((x)&(-x))
#define ll long long
#define MAXN 20007
#define MAXX 20007
using namespace std;
struct cow { ll v,x; }p[MAXN];
ll c1[MAXN],c2[MAXN],n,ans=0;
inline bool cmp(const cow &A,const cow &B) { return A.v<B.v; }
inline void add(ll x) { for (ll i=x;i<MAXX;i+=lowbit(i)) c1[i]++,c2[i]+=x; }
inline ll q1(ll x) {
ll ret=0;
for (ll i=x;i>=1;i-=lowbit(i)) ret+=c1[i];
return ret;
}
inline ll q2(ll x) {
ll ret=0;
for (ll i=x;i>=1;i-=lowbit(i)) ret+=c2[i];
return ret;
}
inline ll read() {
ll X=0,w=0; char ch=0;
while (!isdigit(ch)) w|=ch=='-',ch=getchar();
while (isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
int main() {
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
n=read(); FOR(i,1,n) p[i].v=read(),p[i].x=read();
sort(p+1,p+n+1,cmp);
FOR(i,1,n) {
ll amt1=q1(p[i].x-1),dis1=amt1*p[i].x-q2(p[i].x-1);
ll amt2=q1(MAXX-1)-q1(p[i].x),dis2=q2(MAXX-1)-q2(p[i].x-1)-amt2*p[i].x;
ans+=(dis1+dis2)*p[i].v,add(p[i].x);
}
printf("%lld",ans);
return 0;
}
Luogu2345 | 奶牛集会 (树状数组)的更多相关文章
- 【USACO】奶牛抗议 树状数组+dp
题目描述 约翰家的 N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第 i 位的奶牛 的理智度为 A i ,数字可正可负. 约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几 ...
- LUOGU P2344 奶牛抗议 (树状数组优化dp)
传送门 解题思路 树状数组优化dp,f[i]表示前i个奶牛的分组的个数,那么很容易得出$f[i]=\sum\limits_{1\leq j\leq i}f[j-1]*(sum[i]\ge sum[j- ...
- 【树状数组】【P2345】 奶牛集会
传送门 Description 约翰的\(N\)头奶牛每年都会参加"哞哞大会".哞哞大会是奶牛界的盛事.集会上的活动很多,比如堆干草,跨栅栏,摸牛仔的屁股等等.它们参加活动时会聚在 ...
- [USACO]奶牛抗议(DP+树状数组+离散化)
Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望奶牛在抗议时保持理性,为此,他打算将所有的奶牛隔离成 若干个小组 ...
- P2344 奶牛抗议 离散化+前缀和+动态规划+树状数组
[题目背景] Generic Cow Protests, 2011 Feb [题目描述] 约翰家的N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为Ai,数字可正 ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- bzoj 1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛【dp+树状数组+hash】
最长上升子序列.虽然数据可以直接n方但是另写了个nlogn的 转移:f[i]=max(f[j]+1)(a[j]<a[i]) O(n^2) #include<iostream> #in ...
- POJ 1990 MooFest(树状数组)
MooFest Time Limit: 1000MS Mem ...
- BZOJ_4756_[Usaco2017 Jan]Promotion Counting_树状数组
BZOJ_4756_[Usaco2017 Jan]Promotion Counting_树状数组 Description n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根. 问对 ...
随机推荐
- Go语言实现:【剑指offer】序列化二叉树
该题目来源于牛客网<剑指offer>专题. 请实现两个函数,分别用来序列化和反序列化二叉树. 二叉树的序列化是指:把一棵二叉树按照某种遍历方式的结果以某种格式保存为字符串,从而使得内存中建 ...
- Go语言实现:【剑指offer】反转链表
该题目来源于牛客网<剑指offer>专题. 输入一个链表,反转链表后,输出新链表的表头. Go语言实现: 迭代: /** * Definition for singly-linked li ...
- 07-SpringMVC01
今日知识 1. SpringMVC入门 2. SpringMVC的注解开发 SpringMVC入门 1. 简介: * Spring MVC是Spring提供的一个强大而灵活的web框架.借助于注解,S ...
- golang-练习ATM
package main import "fmt" var ( action int loop bool = true save_money int money int draw_ ...
- web访问 FastDFS 方法思路
由于余老师在 V4.05 以后的版本就把内置 HTTP服务去掉了,所以就算这篇你测试上传成功了,你也访问不了. 推荐大家结合 Nginx 使用 fastdfs-nginx-module ...
- H5谷歌登录 webview错误
接入谷歌登录 H5接入谷歌登录打包apk使用webview谷歌登录不上(谷歌不支持用户代理被归类为嵌入式用户代理(也称为网络视图),因此不允许向Google发出OAuth授权请求) 解决办法:替换ua ...
- PBFT 算法 java实现(下)
PBFT 算法的java实现(下) 在上一篇博客中(如果没有看上一篇博客建议去看上一篇博客),我们介绍了使用Java实现PBFT算法中节点的加入,view的同步等操作.在这篇博客中,我将介绍PBFT算 ...
- 如何在命令行添加换行符到git commit -m "xxx"
需求来源: 需要将自动识别的组件信息.更新信息.任务跟踪单号.下载链接等信息自动提交并推送至gerrit, 然后作为触发条件启动另一个协作业务流程. 方法1:单引号开放方法 git commit -m ...
- python函数定义中引用外部变量的一个问题
如果在函数定义的默认值中引用了一个外部变量,如下所示 x = 3 def func(a = x): print(a, x) 那么a的默认值就会是3, 但是print语句中的x会是调用时的x值 lamb ...
- 复制表结构创建分表 再设置自增ID
CREATE TABLE table_name1 LIKE table_name ALTER TABLE test AUTO_INCREMENT=x