BSGS && EXBSGS
基础BSGS
用处是什么呢w
大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程。
常用于求解离散对数问题。形式化地说,该算法可以在\(O(\sqrt{n})\)用于求解。
接下来是算法过程
首先我们讨论的都是(A,C) = 1(由于C是素数,所以等价于A不是C倍数)的情况,如果(A,C) > 1(A是C倍数),很容易特判掉。
先引入一个结论:
如果(A,C) = 1,那么对于\(x \in N\),有\(A^{x mod \phi(C)} ≡ A^x (mod C)\)
如下证明过程:
因为(A,C) = 1,根据欧拉定理,可得\(A^{k * \phi(C)} ≡ 1 (mod C)\)
设\(k \in N\),根据同幂性,\(A^{k * \phi(C)} ≡ 1 (mod C)\)
设\(a \in N\) 且 \(a < \phi(C)\),所以\(A^x(mod C)\),得证。
所以如果\(0 \leq x < \phi(C)\)无解,之后肯定也无解,但是\(\phi(C)\)并一定是最小正周期。
其算法本质是根号分治,令\(m=[\sqrt{C}]\),我们假设x = i * m - j,其中\(0 \leq i,j \leq m\),则有\(A^{i*m - j} ≡ B\) ,稍加变换,可以得到\(A^{i*m}≡B*A^j\)
我们现在已知的是\(A,B\),所以我们可以先通过枚举j,算出\(B * A^j\),用hash/map存下来,然后再枚举i,计算出\(A^{i * m}\)寻找是否有与之相等的\(B * A^j\),从而我们可以得到所有的\(x\),\(x = i * m - j\)
因为i,j都小于等于m,所欲复杂度为$ Θ(\sqrt{C})$,用map多一个log
进阶BSGS
问题:求解\(x^a ≡ b\) \(mod\) \(p\) (p为质数)
这个问题可以通过转化变成上面基础BSGS中所说的样子
因为\(p\)是一个质数,所以\(p\)一定存在一个原根\(g\),因此在模\(p\)的意义下的任何数\(x\),有且只有一个数\(i\)满足\(x = g^i\)
方法一:
令\(x = g^c\),\(g\)是\(p\)的原根(肯定存在这个g和c),问题转化为求解\((g^c)^a ≡ b\) \(mod\) \(p\) ,可以转化为
\((g^a)^c ≡ b (mod p)\)
这就转化为基础篇中我们所说的内个式子了,可以在\(O(\sqrt{p})\)解出\(c\),这样可以得到原方程的一个特解 \(x_0 ≡ g^c\) \(mod\) \(p\)
方法二:
我们仍令\(x = g^c\),并且设\(b = g^t\),于是乎我们得到 \(g^{ac}≡ g^t\) \(mod\) \(p\)
方程两边同时取离散对数可以得到 \(ac ≡ t\) \(mod\) \(\phi(p)\)
这样我们可以通过BSGS求解\(g^t ≡ b\) \(mod\) \(p\)得到\(t\),于是这就转化成为一个线性同余方程问题,这样也可以解出\(c\),求出\(x\)的一个特解\(x_0 = g^c ≡ b\) \(mod\) \(p\)
如果要找到\(x\)的所有解而不是特解的话:
我们能求出一个特解\(x_0 ≡ g^c (mod\) \(n)\),我们知道\(g^{\phi(n)} ≡ 1 (mod\) \(n)\),于是可以得到下面这个式子,
\[
\forall t \in Z,x^k ≡ g^{c*k+t*\phi(n)} ≡ a (mod p)$
\]
于是得到所有解为
\[
\forall t \in Z ,k|t * \phi(n),x ≡ g^{c+\frac{t * \phi(n)}{k}} ≡ a (mod p)
\]
然后对于上面这个式子有\(\frac{k}{gcd(k,\phi(n))}|t\)。因此我们设\(t = \frac{k}{gcd(k,\phi(n))}*i\),可以得到
\[
\forall i \in Z,x ≡ g^{c + \frac{\phi(n)}{gcd(k,\phi(n))} * i} (mod p)
\]
这就是原问题的所有解
下面是EXBSGS
与BSGS相类似,这个算法也是解决\(a^x≡b(mod p)\)的问题,只不过C可以不是质数。
我们知道,在\(a\)与\(p\)互质的时候,在模\(p\)的意义下\(a\)存在逆元,我们就可以用BSGS来解决问题,那么在他们不互质的情况下,我们就要使他们变成互质的。
具体来说,我们设\(d_i = gcd(a,p)\),如果\(d_1\)不是b的因子,那么原方程无解,有解的情况下我们将方程两边同时处以\(d_1\),可以得到
\[
\frac{a}{d_1} * a^{x - 1}≡\frac{b}{d_1} mod \frac{p}{d_1}
\]
如果\(a\)和\(\frac{p}{d_1}\)仍然不互质的话设\(d_2 = gcd(a,\frac{p}{d_1})\)。如果\(d_2\)不是\(\frac{b}{d_1}\),则方程无解,有解的情况下将方程两边同时除以\(d_2\),得到
\[
\frac{a^2}{d_1d_2} * a^{x - 2} ≡ \frac{b}{d_1d_2} mod \frac{p}{d_1d_2}
\]
同理,我们不停地这样判断,直到\(a\)与\(\frac{p}{d_1d_2...d_k}\)互质为止。
设\(D = \prod_{i = 1}^{k} d_i\),于是方程就变成了下面这样:
\[
\frac{a^k}{D} * a^{x - k} ≡ \frac{b}{D} mod \frac{p}{D}
\]
因为\(a\)与\(\frac{p}{D}\)互质,于是可是推出\(\frac{a^k}{D}\)与\(\frac{p}{D}\)互质,这样的话\(\frac{a^k}{D}\)就有逆元了,于是把它移到方程的右边,这就变成了一个BSGS问题,于是求解\(x - k\)后再加上\(k\)就是原方程的解了。
值得注意的是,不排除解小于等于k的情况,所以咋消因子前应\(O(k)\)枚举,直接验证\(a^i≡b\) \(mod\) \(p\),这样就能避免这种情况。
BSGS && EXBSGS的更多相关文章
- BSGS&EXBSGS 大手拉小手,大步小步走
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...
- BSGS&ExBSGS
BSGS&ExBSGS 求解形如 \[a^x\equiv b\pmod p\] 的高次同余方程 BSGS 假装\(gcd(a,p)=1\). 设\(m=\lceil\sqrt p \rceil ...
- [note]BSGS & exBSGS
BSGS (感觉这东西还是要写一下) BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题 设\(m=\lceil\sqrt p\rceil,k ...
- 算法笔记--BSGS && exBSGS 模板
https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...
- BSGS+exBSGS POJ2417+POJ3243
a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...
- Noip前的大抱佛脚----数论
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...
- 各种友(e)善(xin)数论总集(未完待续),从入门到绝望
目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- ZROI 2019 暑期游记
ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...
随机推荐
- mysql-使用存储过程创建大批量数据
参考:https://www.iteye.com/blog/825635381-2161290 场景1.创建1万个table,每个table种插入1条记录 DELIMITER $$ CREATE DA ...
- Android Q 接入 MQTT
Android Q 接入 MQTT 首先在APP 下引入mqtt的库 implementation 'org.eclipse.paho:org.eclipse.paho.client.mqttv3:1 ...
- django Warning: (3135, "'NO_ZERO_DATE', 'NO_ZERO_IN_DATE' and 'ERROR_FOR_DIVISION_BY_ZERO' sql modes
django连接数据库配置设置如下 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test2', ...
- 谷歌浏览器安装apizza
接口测试是卡发中不可缺少的一环,那么常用的postman是英文就很不方便一些小伙伴的使用,所以此工具和postman功能相同且升级并且是中文模式 安装: 链接:https://pan.baidu.co ...
- RMQ(区间最值问题)
问题: RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大) ...
- Wannafly Camp 2020 Day 2C 纳新一百的石子游戏
为什么为了这么个简单题发博客呢? 因为我又因为位运算运算符优先级的问题血了 #include <bits/stdc++.h> using namespace std; #define in ...
- JQuery-Snowfall降雪插件使用
一个很好使用的降雪插件,可以实现雪花.爱心.图片等下降落. 1.JQuery-Snowfall插件的使用方法: 增加了使用图像作为雪花而不是纯色元素的功能. $(element).snowfa ...
- python定义一种新类型的元组
# 定义一种新类型的元组,只保留int类型,切只大于0的元素 # 例如:IntTuple([1,-1,"abc",6,['x','y'],3])==>(1,6,3) # 解决 ...
- django 完成登录功能
啃了几天文档,感觉能理解了这个框架,但是真的下手的时候真的不知道从何开始. orm即Object-Relationl Mapping,看这名字就是操作数据库的,用过ssm,不过django操作数据库是 ...
- npx工具
参考文章:阮一峰的网络日志 - npx 使用教程 npx的作用 1.调用项目模块 即node_modules目录下的模块,而不用加上相对路径 $ npx mocha --version 原本应该是这样 ...