阈值化

在对图像进行处理操作的过程中,我们常常需要对图像中的像素做出取舍与决策,直接剔除一些低于或高于一定值的像素。

阈值分割可以视为最简单的图像分割方法。比如基于图像中物体与背景之间的灰度差异,可以利用阈值分割出我们需要的物体。这种分割是像素级的分割,为了从一幅图像中提取我们需要的部分,应该用图像中的每个像素点的灰度值与选择的阈值进行比较,并作出取舍判断。

注意,阈值的选取依赖于具体问题,物体在不同的图片中可能会有不同的灰度值。一旦找到了需要分割的物体的像素点,可以对这些像素点设定一些特定的值来表示。例如可以将物体的像素点的灰度值设定为”0“(黑色),其他像素点的灰度值设为”255“(白色)。

OpenCV 中 threshold() 函数(固定阈值操作)和 adaptiveThreshold() 函数(自适应阈值操作)可以满足这样的需求。它们的基本思想是:给定一个数组和一个阈值,根据数组中的每个元素的值是高于还是低于阈值而进行一些操作。

固定阈值操作:threshold 函数

threshold() 函数是对单通道数组应用固定阈值操作。该函数的典型应用是对灰度图像进行阈值操作得到二值图像(compare 函数也可以达到此目的),或者去除噪声,过滤掉像素值很小或很大的图像点。

double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type);

  • src,输入数组,填单通道、8 或 32 位浮点类型的 Mat 类型对象即可。
  • dst,输出数组,和第一个参数中的 Mat 变量有一样的尺寸和类型。
  • thresh,阈值的具体值。
  • maxval,输出像素值的上限,仅当第五个参数阈值类型 type 取 THRESH_BINARY 或 THRESH_BINARY_INV 时会用到。
  • type,阈值类型。

折线为将被阈值化的值,虚线为阈值

THRESH_BINARY:大于阈值的部分被置为 maxval,小于部分被置为 0

THRESH_BINARY_INV:大于阈值部分被置为 0,小于部分被置为 maxval

THRESH_TRUNC:大于阈值部分被置为 thresh,小于部分保持原样

THRESH_TOZERO:小于阈值部分被置为 0,大于部分保持不变

THRESH_TOZERO_INV:大于阈值部分被置为 0,小于部分保持不变

THRESH_BINARY|THRESH_OTSU:使用最大类间差分法(THRESH_OTSU)获取阈值,然后再用该阈值进行二分,二分方法是上面 5 种选择。
THRESH_BINARY|THRESH_TRIANGLE:使用三角法获取阈值,然后再用该阈值进行二分,二分方法是上面 5 种选择。

  • 返回值为 thresh

自适应阈值操作:adaptiveThreshold 函数

前面看到简单阈值是一种全局性的阈值,只需要规定一个阈值的值,整个图像都和这个阈值比较。而自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。

double adaptiveThreshold (InputArray src, OutputArray dst, double maxVal, int adaptiveMethod, int thresholdType, int blockSize, double C);

  • src,输入数组,Mat 类的对象即可,但需要为 8 位单通道浮点型图像。
  • dst,输出数组,和第一个参数中的 Mat 变量有一样的尺寸和类型。
  • maxVal,输出像素值的上限。
  • adaptiveMethod,用于指定要使用的自适应阈值算法。阈值有两种取值:

ADAPTIVE_THRESH_MEAN_C :领域内均值

ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权重为一个高斯窗口。

  • thresholdType,阈值类型。取值必须为 THRESH_BINARY 或 THRESH_BINARY_INV。
  • blockSize,用于计算阈值大小的一个像素的邻域尺寸,取值为 3、5、7。
  • C,阈值 = 平均或加权平均值 - C。为0相当于阈值 就是求得领域内均值或者加权值。

代码示例:

#include <opencv.hpp>
using namespace cv;
int main() {
Mat src = imread("C:/Users/齐明洋/Desktop/证件照/7.jpg", );
imshow("src", src); Mat dst;
threshold(src, dst, , , THRESH_BINARY);
imshow("binary img", dst); adaptiveThreshold(src, dst, , ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, , );
imshow("adaptive binary img", dst); waitKey();
}

效果展示:

借鉴博客:https://blog.csdn.net/qq_37385726/article/details/82015545

https://www.cnblogs.com/yinliang-liang/p/9293310.html

------------恢复内容开始------------

阈值化

在对图像进行处理操作的过程中,我们常常需要对图像中的像素做出取舍与决策,直接剔除一些低于或高于一定值的像素。

阈值分割可以视为最简单的图像分割方法。比如基于图像中物体与背景之间的灰度差异,可以利用阈值分割出我们需要的物体。这种分割是像素级的分割,为了从一幅图像中提取我们需要的部分,应该用图像中的每个像素点的灰度值与选择的阈值进行比较,并作出取舍判断。

注意,阈值的选取依赖于具体问题,物体在不同的图片中可能会有不同的灰度值。一旦找到了需要分割的物体的像素点,可以对这些像素点设定一些特定的值来表示。例如可以将物体的像素点的灰度值设定为”0“(黑色),其他像素点的灰度值设为”255“(白色)。

OpenCV 中 threshold() 函数(固定阈值操作)和 adaptiveThreshold() 函数(自适应阈值操作)可以满足这样的需求。它们的基本思想是:给定一个数组和一个阈值,根据数组中的每个元素的值是高于还是低于阈值而进行一些操作。

固定阈值操作:threshold 函数

threshold() 函数是对单通道数组应用固定阈值操作。该函数的典型应用是对灰度图像进行阈值操作得到二值图像(compare 函数也可以达到此目的),或者去除噪声,过滤掉像素值很小或很大的图像点。

double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type);

  • src,输入数组,填单通道、8 或 32 位浮点类型的 Mat 类型对象即可。
  • dst,输出数组,和第一个参数中的 Mat 变量有一样的尺寸和类型。
  • thresh,阈值的具体值。
  • maxval,输出像素值的上限,仅当第五个参数阈值类型 type 取 THRESH_BINARY 或 THRESH_BINARY_INV 时会用到。
  • type,阈值类型。

折线为将被阈值化的值,虚线为阈值

THRESH_BINARY:大于阈值的部分被置为 maxval,小于部分被置为 0

THRESH_BINARY_INV:大于阈值部分被置为 0,小于部分被置为 maxval

THRESH_TRUNC:大于阈值部分被置为 thresh,小于部分保持原样

THRESH_TOZERO:小于阈值部分被置为 0,大于部分保持不变

THRESH_TOZERO_INV:大于阈值部分被置为 0,小于部分保持不变

THRESH_BINARY | THRESH_OTSU:使用最大类间差分法(THRESH_OTSU)获取阈值,然后再用该阈值进行二分,二分方法是 | 左边方法。

THRESH_BINARY_INV | THRESH_TRIANGLE:使用三角法获取阈值,然后再用该阈值进行二分,二分方法是 | 左边方法。

自适应阈值操作:adaptiveThreshold 函数

前面看到简单阈值是一种全局性的阈值,只需要规定一个阈值的值,整个图像都和这个阈值比较。而自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。

double adaptiveThreshold (InputArray src, OutputArray dst, double maxVal, int adaptiveMethod, int thresholdType, int blockSize, double C);

  • src,输入数组,Mat 类的对象即可,但需要为 8 位单通道浮点型图像。
  • dst,输出数组,和第一个参数中的 Mat 变量有一样的尺寸和类型。
  • maxVal,输出像素值的上限。
  • adaptiveMethod,用于指定要使用的自适应阈值算法。阈值有两种取值:

ADAPTIVE_THRESH_MEAN_C :领域内均值

ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权重为一个高斯窗口。

  • thresholdType,阈值类型。取值必须为 THRESH_BINARY 或 THRESH_BINARY_INV。
  • blockSize,用于计算阈值大小的一个像素的邻域尺寸,取值为 3、5、7。
  • C,阈值 = 平均或加权平均值 - C。为0相当于阈值 就是求得领域内均值或者加权值。

代码示例:

#include <opencv.hpp>
using namespace cv;
int main() {
Mat src = imread("C:/Users/齐明洋/Desktop/证件照/7.jpg", );
imshow("src", src); Mat dst;
threshold(src, dst, , , THRESH_BINARY);
imshow("binary img", dst); adaptiveThreshold(src, dst, , ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, , );
imshow("adaptive binary img", dst); waitKey();
}

效果展示:

借鉴博客:https://blog.csdn.net/qq_37385726/article/details/82015545

https://www.cnblogs.com/yinliang-liang/p/9293310.html

------------恢复内容开始------------

阈值化

在对图像进行处理操作的过程中,我们常常需要对图像中的像素做出取舍与决策,直接剔除一些低于或高于一定值的像素。

阈值分割可以视为最简单的图像分割方法。比如基于图像中物体与背景之间的灰度差异,可以利用阈值分割出我们需要的物体。这种分割是像素级的分割,为了从一幅图像中提取我们需要的部分,应该用图像中的每个像素点的灰度值与选择的阈值进行比较,并作出取舍判断。

注意,阈值的选取依赖于具体问题,物体在不同的图片中可能会有不同的灰度值。一旦找到了需要分割的物体的像素点,可以对这些像素点设定一些特定的值来表示。例如可以将物体的像素点的灰度值设定为”0“(黑色),其他像素点的灰度值设为”255“(白色)。

OpenCV 中 threshold() 函数(固定阈值操作)和 adaptiveThreshold() 函数(自适应阈值操作)可以满足这样的需求。它们的基本思想是:给定一个数组和一个阈值,根据数组中的每个元素的值是高于还是低于阈值而进行一些操作。

固定阈值操作:threshold 函数

threshold() 函数是对单通道数组应用固定阈值操作。该函数的典型应用是对灰度图像进行阈值操作得到二值图像(compare 函数也可以达到此目的),或者去除噪声,过滤掉像素值很小或很大的图像点。

double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type);

  • src,输入数组,填单通道、8 或 32 位浮点类型的 Mat 类型对象即可。
  • dst,输出数组,和第一个参数中的 Mat 变量有一样的尺寸和类型。
  • thresh,阈值的具体值。
  • maxval,输出像素值的上限,仅当第五个参数阈值类型 type 取 THRESH_BINARY 或 THRESH_BINARY_INV 时会用到。
  • type,阈值类型。

折线为将被阈值化的值,虚线为阈值

THRESH_BINARY:大于阈值的部分被置为 maxval,小于部分被置为 0

THRESH_BINARY_INV:大于阈值部分被置为 0,小于部分被置为 maxval

THRESH_TRUNC:大于阈值部分被置为 thresh,小于部分保持原样

THRESH_TOZERO:小于阈值部分被置为 0,大于部分保持不变

THRESH_TOZERO_INV:大于阈值部分被置为 0,小于部分保持不变

THRESH_BINARY | THRESH_OTSU:使用最大类间差分法(THRESH_OTSU)获取阈值,然后再用该阈值进行二分,二分方法是 | 左边方法。

THRESH_BINARY_INV | THRESH_TRIANGLE:使用三角法获取阈值,然后再用该阈值进行二分,二分方法是 | 左边方法。

自适应阈值操作:adaptiveThreshold 函数

前面看到简单阈值是一种全局性的阈值,只需要规定一个阈值的值,整个图像都和这个阈值比较。而自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。

double adaptiveThreshold (InputArray src, OutputArray dst, double maxVal, int adaptiveMethod, int thresholdType, int blockSize, double C);

  • src,输入数组,Mat 类的对象即可,但需要为 8 位单通道浮点型图像。
  • dst,输出数组,和第一个参数中的 Mat 变量有一样的尺寸和类型。
  • maxVal,输出像素值的上限。
  • adaptiveMethod,用于指定要使用的自适应阈值算法。阈值有两种取值:

ADAPTIVE_THRESH_MEAN_C :领域内均值

ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权重为一个高斯窗口。

  • thresholdType,阈值类型。取值必须为 THRESH_BINARY 或 THRESH_BINARY_INV。
  • blockSize,用于计算阈值大小的一个像素的邻域尺寸,取值为 3、5、7。
  • C,阈值 = 平均或加权平均值 - C。为0相当于阈值 就是求得领域内均值或者加权值。

代码示例:

#include <opencv.hpp>
using namespace cv;
int main() {
Mat src = imread("C:/Users/齐明洋/Desktop/证件照/7.jpg", );
imshow("src", src); Mat dst;
threshold(src, dst, , , THRESH_BINARY);
imshow("binary img", dst); adaptiveThreshold(src, dst, , ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, , );
imshow("adaptive binary img", dst); waitKey();
}

效果展示:

借鉴博客:https://blog.csdn.net/qq_37385726/article/details/82015545

https://www.cnblogs.com/yinliang-liang/p/9293310.html

------------恢复内容结束------------

------------恢复内容结束------------

opencv —— threshold、adaptiveThreshold 固定阈值 & 自适应阈值 进行图像二值化处理的更多相关文章

  1. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  2. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

  3. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

  4. python-opencv 图像二值化,自适应阈值处理

    定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果. 一幅图像包括目标物体.背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用 ...

  5. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  6. opencv图像二值化的函数cvThreshold()。 cvAdaptiveThreshol

    OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* sr ...

  7. 10、OpenCV Python 图像二值化

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...

  8. opencv python:图像二值化

    import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...

  9. opencv-python图像二值化函数cv2.threshold函数详解及参数cv2.THRESH_OTSU使用

    cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(i ...

随机推荐

  1. 长连接 Websocket

    import json from flask import Flask,request,render_template from geventwebsocket.handler import WebS ...

  2. Java反射机制——学习总结

    前几天上REST课,因为涉及到Java的反射机制,之前看过一直没有用过,有些遗忘了,周末找了些资料来重新学习,现在总结一下,加深印象. 什么是反射机制? 参考百度百科对java反射机制的定义: “JA ...

  3. 迭代器中set的使用

    今天对迭代器中的set方法进行了一下简单的使用,由于之前使用过list方法,所以将他与list进行了一下对比. list中加入对象时不会进行查重,也就是只要是一个符合的对象就可以加到list中,而对于 ...

  4. 文件系统(02):基于SpringBoot框架,管理Xml和CSV文件类型

    本文源码:GitHub·点这里 || GitEE·点这里 一.文档类型简介 1.XML文档 XML是可扩展标记语言,是一种用于标记电子文件使其具有结构性的标记语言.标记指计算机所能理解的信息符号,通过 ...

  5. centos6安装lamp

    1.安装Apache [root@localhost ~]# yum -y install httpd 设置开启自启动 [root@localhost ~]# chkconfig httpd on 启 ...

  6. 实验14:VLAN间的路由

    实验11-1: 单臂路由实现VLAN 间路由 Ø    实验目的通过本实验,读者可以掌握如下技能:(1) 路由器以太网接口上的子接口(2) 单臂路由实现VLAN 间路由的配置Ø    实验拓扑 实验步 ...

  7. 学过 C++ 的你,不得不知的这 10 条细节!

    每日一句英语学习,每天进步一点点: “Action may not always bring happiness; but there is no happiness without action.” ...

  8. 用Go语言在Linux下调用新中新DKQ-A16D读卡器,读二代证数据

    1.背景 前几天用Python在Linux下成功的获取了二代证数据,最近正在学Go语言,这两天想着用Go语言也实现一下试看看. 2.开搞C++ 这次就比较简单了,直接把CppDemo里面的SynRea ...

  9. bzoj 50题纪念

    bzoj好难,边看题解边做终于水到了50t,不知道水平提没提高啊TAT

  10. C++ STL——优先队列的结构体表示方法

    优先队列是队列的一种,但是自身具有一定的排序功能,所以不具有队列“先进先出”的性质 刚刚接触优先队列,看过网上的用法后感觉还是太过于朦胧,所以打算自己写一个稍微细节一点的. 头文件 #include& ...