自定义layer

https://www.cnblogs.com/sdu20112013/p/12132786.html一文里说了怎么写自定义的模型.本篇说怎么自定义层.

分两种:

  • 不含模型参数的layer
  • 含模型参数的layer

核心都一样,自定义一个继承自nn.Module的类,在类的forward函数里实现该layer的计算,不同的是,带参数的layer需要用到nn.Parameter

不含模型参数的layer

直接继承nn.Module

import torch
from torch import nn class CenteredLayer(nn.Module):
def __init__(self, **kwargs):
super(CenteredLayer, self).__init__(**kwargs)
def forward(self, x):
return x - x.mean() layer = CenteredLayer()
layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float)) net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
y = net(torch.rand(4, 8))
y.mean().item()

含模型参数的layer

  • Parameter
  • ParameterList
  • ParameterDict

Parameter类其实是Tensor的子类,如果一个TensorParameter,那么它会自动被添加到模型的参数列表里。所以在自定义含模型参数的层时,我们应该将参数定义成Parameter,除了直接定义成Parameter类外,还可以使用ParameterListParameterDict分别定义参数的列表和字典。

ParameterList用法和list类似

class MyDense(nn.Module):
def __init__(self):
super(MyDense,self).__init__()
self.params = nn.ParameterList([nn.Parameter(torch.randn(4,4)) for i in range(4)])
self.params.append(nn.Parameter(torch.randn(4,1))) def forward(self,x):
for i in range(len(self.params)):
x = torch.mm(x,self.params[i])
return x net = MyDense()
print(net)

输出

MyDense(
(params): ParameterList(
(0): Parameter containing: [torch.FloatTensor of size 4x4]
(1): Parameter containing: [torch.FloatTensor of size 4x4]
(2): Parameter containing: [torch.FloatTensor of size 4x4]
(3): Parameter containing: [torch.FloatTensor of size 4x4]
(4): Parameter containing: [torch.FloatTensor of size 4x1]
)
)

ParameterDict用法和python dict类似.也可以用.keys(),.items()

class MyDictDense(nn.Module):
def __init__(self):
super(MyDictDense, self).__init__()
self.params = nn.ParameterDict({
'linear1': nn.Parameter(torch.randn(4, 4)),
'linear2': nn.Parameter(torch.randn(4, 1))
})
self.params.update({'linear3': nn.Parameter(torch.randn(4, 2))}) # 新增 def forward(self, x, choice='linear1'):
return torch.mm(x, self.params[choice]) net = MyDictDense()
print(net) print(net.params.keys(),net.params.items()) x = torch.ones(1, 4)
net(x, 'linear1')

输出

MyDictDense(
(params): ParameterDict(
(linear1): Parameter containing: [torch.FloatTensor of size 4x4]
(linear2): Parameter containing: [torch.FloatTensor of size 4x1]
(linear3): Parameter containing: [torch.FloatTensor of size 4x2]
)
)
odict_keys(['linear1', 'linear2', 'linear3']) odict_items([('linear1', Parameter containing:
tensor([[-0.2275, -1.0434, -1.6733, -1.8101],
[ 1.7530, 0.0729, -0.2314, -1.9430],
[-0.1399, 0.7093, -0.4628, -0.2244],
[-1.6363, 1.2004, 1.4415, -0.1364]], requires_grad=True)), ('linear2', Parameter containing:
tensor([[ 0.5035],
[-0.0171],
[-0.8580],
[-1.1064]], requires_grad=True)), ('linear3', Parameter containing:
tensor([[-1.2078, 0.4364],
[-0.8203, 1.7443],
[-1.7759, 2.1744],
[-0.8799, -0.1479]], requires_grad=True))])

使用自定义的layer构造模型

layer1 = MyDense()
layer2 = MyDictDense() net = nn.Sequential(layer2,layer1)
print(net)
print(net(x))

输出

Sequential(
(0): MyDictDense(
(params): ParameterDict(
(linear1): Parameter containing: [torch.FloatTensor of size 4x4]
(linear2): Parameter containing: [torch.FloatTensor of size 4x1]
(linear3): Parameter containing: [torch.FloatTensor of size 4x2]
)
)
(1): MyDense(
(params): ParameterList(
(0): Parameter containing: [torch.FloatTensor of size 4x4]
(1): Parameter containing: [torch.FloatTensor of size 4x4]
(2): Parameter containing: [torch.FloatTensor of size 4x4]
(3): Parameter containing: [torch.FloatTensor of size 4x4]
(4): Parameter containing: [torch.FloatTensor of size 4x1]
)
)
)
tensor([[-4.7566]], grad_fn=<MmBackward>)

从头学pytorch(十一):自定义层的更多相关文章

  1. 从头学pytorch(一):数据操作

    跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3 ...

  2. 从头学pytorch(三) 线性回归

    关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据 ...

  3. 从头学pytorch(九):模型构造

    模型构造 nn.Module nn.Module是pytorch中提供的一个类,是所有神经网络模块的基类.我们自定义的模块要继承这个基类. import torch from torch import ...

  4. 从头学pytorch(六):权重衰减

    深度学习中常常会存在过拟合现象,比如当训练数据过少时,训练得到的模型很可能在训练集上表现非常好,但是在测试集上表现不好. 应对过拟合,可以通过数据增强,增大训练集数量.我们这里先不介绍数据增强,先从模 ...

  5. 从头学pytorch(七):dropout防止过拟合

    上一篇讲了防止过拟合的一种方式,权重衰减,也即在loss上加上一部分\(\frac{\lambda}{2n} \|\boldsymbol{w}\|^2\),从而使得w不至于过大,即不过分偏向某个特征. ...

  6. 从头学pytorch(十二):模型保存和加载

    模型读取和存储 总结下来,就是几个函数 torch.load()/torch.save() 通过python的pickle完成序列化与反序列化.完成内存<-->磁盘转换. Module.s ...

  7. 从头学pytorch(十五):AlexNet

    AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...

  8. 从头学pytorch(十九):批量归一化batch normalization

    批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...

  9. 从头学pytorch(二十):残差网络resnet

    残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路 ...

随机推荐

  1. Flask学习之十一 邮件支持

    英文博客地址:blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-xi-email-support 中文翻译地址:http://www. ...

  2. tensorflow 卷积层

    TensorFlow 卷积层   让我们看下如何在 TensorFlow 里面实现 CNN. TensorFlow 提供了 tf.nn.conv2d() 和 tf.nn.bias_add() 函数来创 ...

  3. Go 语言开发工具

    Go 语言开发工具 LiteIDE LiteIDE是一款开源.跨平台的轻量级Go语言集成开发环境(IDE). 支持的操作系统 Windows x86 (32-bit or 64-bit) Linux ...

  4. swiper仿tab栏切换

    转载  https://developers.weixin.qq.com/community/develop/article/doc/000040a5dc4518005d2842fdf51c13 小程 ...

  5. 浮动,定位,flex布局

    什么是文档流 英文原文是:Normal flow. In CSS 2.1, normal flow includes block formatting of block-level boxes, in ...

  6. Git上传本地项目到码云

    前提:本地安装git.注册码云 1.进入本地项目文件夹,鼠标右键代开 Git Bash Here 2.输入命令 初始化库管理文件 git init 3.输入命名 修改Git的全局配置 git conf ...

  7. 浅谈Transformer 及Attention网络

    1 Transformer 模型结构处理自然语言序列的模型有 rnn, cnn(textcnn),但是现在介绍一种新的模型,transformer.与RNN不同的是,Transformer直接把一句话 ...

  8. PHP实现微信小程序人脸识别刷脸登录功能

    首先我们先确认我们的百度云人脸库里已经上传了我们的个人信息照片 然后我们在后台写刷脸登陆的接口login我们要把拍照获取的照片存储到服务器 public function login(){    // ...

  9. 困扰的问题终于解决了-docker时区不正确的问题修改记

    前一阵子有一台服务器,mysql的时间比北京时间晚了8个小时.我知道是时区的问题,但是不知道为什么弄成这样,宿主机没有问题,后来一看mysql的docker,时区是错的. mybatis-plus打印 ...

  10. java 创建线程方式

    1.继承Thread类 子类覆写父类中的run方法,将线程运行的代码存放在run中. 建立子类对象的同时线程也被创建. 通过调用start方法开启线程. 2.实现Runnable接口 子类覆盖接口中的 ...