Python数据分析:手把手教你用Pandas生成可视化图表
大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。
作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。下面,我们总结一下PD库的一些使用方法和入门技巧。
一、线型图
对于pandas的内置数据类型,Series 和 DataFrame 都有一个用于生成各类 图表 的 plot 方法。 默认情况下, 它们所生成的是线型图。其实Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现。
参考以下示例代码 :
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
periods=10), columns=list('ABCD')) df.plot()
执行上面示例代码,得到以下结果 -

如果索引由日期组成,则调用gct().autofmt_xdate()来格式化x轴,如上图所示。
我们可以使用x和y关键字绘制一列与另一列。
s = Series( np. random. randn( 10). cumsum(), index= np. arange( 0, 100, 10))
s. plot()

pandas 的大部分绘图方法都有 一个 可选的ax参数, 它可以是一个 matplotlib 的 subplot 对象。 这使你能够在网格 布局 中 更为灵活地处理 subplot 的位置。 DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示):
df = DataFrame( np. random. randn( 10, 4). cumsum( 0), ...: columns=[' A', 'B', 'C', 'D'], index= np. arange( 0, 100, 10)) df. plot()

二、柱状图
在生成线型图的代码中加上 kind=' bar'( 垂直柱状图) 或 kind=' barh'( 水平柱状图) 即可生成柱状图。 这时,Series 和 DataFrame 的索引将会被用 作 X( bar) 或 (barh)刻度:
In [59]: fig, axes = plt. subplots( 2, 1)
In [60]: data = Series( np. random. rand( 16), index= list(' abcdefghijklmnop'))
In [61]: data. plot( kind=' bar', ax= axes[ 0], color=' k', alpha= 0. 7)
Out[ 61]: < matplotlib. axes. AxesSubplot at 0x4ee7750>
In [62]: data. plot( kind=' barh', ax= axes[ 1], color=' k', alpha= 0.
对于 DataFrame, 柱状 图 会 将 每一 行的 值 分为 一组, 如图 8- 16 所示:
In [63]: df = DataFrame( np. random. rand( 6, 4), ...: index=[' one', 'two', 'three', 'four', 'five', 'six'], ...: columns= pd. Index([' A', 'B', 'C', 'D'], name=' Genus'))
In [64]: df
Out[ 64]:
Genus
A B C D
one 0. 301686 0. 156333 0. 371943 0. 270731
two 0. 750589 0. 525587 0. 689429 0. 358974
three 0. 381504 0. 667707 0. 473772 0. 632528
four 0. 942408 0. 180186 0. 708284 0. 641783
five 0. 840278 0. 909589 0. 010041 0. 653207
six 0. 062854 0. 589813 0. 811318 0. 060217
In [65]: df. plot( kind=' bar')

三、条形图
现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()
执行上面示例代码,得到以下结果 -

要生成一个堆积条形图,通过指定:pass stacked=True -
import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)
执行上面示例代码,得到以下结果 -

要获得水平条形图,使用barh()方法 -
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d']) df.plot.barh(stacked=True)
四、直方图
可以使用plot.hist()方法绘制直方图。我们可以指定bins的数量值。
import pandas as pd
import numpy as np df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) df.plot.hist(bins=20)
执行上面示例代码,得到以下结果 -

要为每列绘制不同的直方图,请使用以下代码 -
import pandas as pd
import numpy as np df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) df.hist(bins=20)
执行上面示例代码,得到以下结果 -

五、箱型图
Boxplot可以绘制调用Series.box.plot()和DataFrame.box.plot()或DataFrame.boxplot()来可视化每列中值的分布。
例如,这里是一个箱形图,表示对[0,1)上的统一随机变量的10次观察的五次试验。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()
执行上面示例代码,得到以下结果 -

六、块型图
可以使用Series.plot.area()或DataFrame.plot.area()方法创建区域图形。
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()
执行上面示例代码,得到以下结果 -

七、散点图
可以使用DataFrame.plot.scatter()方法创建散点图。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')
执行上面示例代码,得到以下结果 -

八、饼状图
饼状图可以使用DataFrame.plot.pie()方法创建。
import pandas as pd
import numpy as np df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)
执行上面示例代码,得到以下结果 -

公众号python社区营
Python数据分析:手把手教你用Pandas生成可视化图表的更多相关文章
- 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(9):Pandas (八)数据预处理(2)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(13):Pandas (十二)数据表拼接
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(3):Pandas (二)数据结构 Series
在家为国家做贡献太无聊,不如跟我一起学点 Python 顺便问一下,你们都喜欢什么什么样的文章封面图,老用这一张感觉有点丑 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析( ...
- 小白学 Python 数据分析(7):Pandas (六)数据导入
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(8):Pandas (七)数据预处理
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(10):Pandas (九)数据运算
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
随机推荐
- java 根据秘钥,对数据进行加解密
package test; import com.alibaba.fastjson.JSONObject; import sun.misc.BASE64Decoder; import sun.misc ...
- 阿里云DataV专业版发布,为可视化创造更多可能!
阿里云数据可视化应用工具DataV正式推出专业版,该版本为可视化领域专业团队和从业者量身打造,定位数据可视分析大屏搭建场景,让使用者可以轻松hold住复杂交互设计和实时数据交互查询需求. 什么是Dat ...
- 2018-8-10-win10-uwp-如何打包Nuget给其他人
title author date CreateTime categories win10 uwp 如何打包Nuget给其他人 lindexi 2018-08-10 19:16:50 +0800 20 ...
- Websocket 单聊功能
单聊代码 import json from flask import Flask,request,render_template from geventwebsocket.handler import ...
- Hibernate懒加载导致json数据对象传输异常的问题---(非常重要)
1. 异常: [console_demo][WARN] [2016-12-15 19:49:35] org.springframework.web.servlet.mvc.support.Defaul ...
- hdu 1716 排序2(dfs)
排列2 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- Vue中computed与method的区别
转载于:https://segmentfault.com/a/1190000014478664?utm_source=tag-newest 1.computed区别于method的两个核心 在官方文档 ...
- 2019-10-24-dotnet-列表-Linq-的-Take-用法
title author date CreateTime categories dotnet 列表 Linq 的 Take 用法 lindexi 2019-10-24 9:4:23 +0800 201 ...
- H3C 通配符掩码的应用示例
- linux一些重要数据结构
如同你想象的, 注册设备编号仅仅是驱动代码必须进行的诸多任务中的第一个. 我们将很 快看到其他重要的驱动组件, 但首先需要涉及一个别的. 大部分的基础性的驱动操作包括 3 个重要的内核数据结构, 称为 ...