Python数据分析:手把手教你用Pandas生成可视化图表
大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。
作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。下面,我们总结一下PD库的一些使用方法和入门技巧。
一、线型图
对于pandas的内置数据类型,Series 和 DataFrame 都有一个用于生成各类 图表 的 plot 方法。 默认情况下, 它们所生成的是线型图。其实Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现。
参考以下示例代码 :
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
periods=10), columns=list('ABCD')) df.plot()
执行上面示例代码,得到以下结果 -
如果索引由日期组成,则调用gct().autofmt_xdate()
来格式化x
轴,如上图所示。
我们可以使用x
和y
关键字绘制一列与另一列。
s = Series( np. random. randn( 10). cumsum(), index= np. arange( 0, 100, 10))
s. plot()
pandas 的大部分绘图方法都有 一个 可选的ax参数, 它可以是一个 matplotlib 的 subplot 对象。 这使你能够在网格 布局 中 更为灵活地处理 subplot 的位置。 DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示):
df = DataFrame( np. random. randn( 10, 4). cumsum( 0), ...: columns=[' A', 'B', 'C', 'D'], index= np. arange( 0, 100, 10)) df. plot()
二、柱状图
在生成线型图的代码中加上 kind=' bar'( 垂直柱状图) 或 kind=' barh'( 水平柱状图) 即可生成柱状图。 这时,Series 和 DataFrame 的索引将会被用 作 X( bar) 或 (barh)刻度:
In [59]: fig, axes = plt. subplots( 2, 1) In [60]: data = Series( np. random. rand( 16), index= list(' abcdefghijklmnop')) In [61]: data. plot( kind=' bar', ax= axes[ 0], color=' k', alpha= 0. 7) Out[ 61]: < matplotlib. axes. AxesSubplot at 0x4ee7750> In [62]: data. plot( kind=' barh', ax= axes[ 1], color=' k', alpha= 0.
对于 DataFrame, 柱状 图 会 将 每一 行的 值 分为 一组, 如图 8- 16 所示:
In [63]: df = DataFrame( np. random. rand( 6, 4), ...: index=[' one', 'two', 'three', 'four', 'five', 'six'], ...: columns= pd. Index([' A', 'B', 'C', 'D'], name=' Genus')) In [64]: df Out[ 64]: Genus A B C D
one 0. 301686 0. 156333 0. 371943 0. 270731
two 0. 750589 0. 525587 0. 689429 0. 358974
three 0. 381504 0. 667707 0. 473772 0. 632528
four 0. 942408 0. 180186 0. 708284 0. 641783
five 0. 840278 0. 909589 0. 010041 0. 653207
six 0. 062854 0. 589813 0. 811318 0. 060217 In [65]: df. plot( kind=' bar')
三、条形图
现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()
执行上面示例代码,得到以下结果 -
要生成一个堆积条形图,通过指定:pass stacked=True -
import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)
执行上面示例代码,得到以下结果 -
要获得水平条形图,使用barh()
方法 -
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d']) df.plot.barh(stacked=True)
四、直方图
可以使用plot.hist()
方法绘制直方图。我们可以指定bins
的数量值。
import pandas as pd
import numpy as np df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) df.plot.hist(bins=20)
执行上面示例代码,得到以下结果 -
要为每列绘制不同的直方图,请使用以下代码 -
import pandas as pd
import numpy as np df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c']) df.hist(bins=20)
执行上面示例代码,得到以下结果 -
五、箱型图
Boxplot可以绘制调用Series.box.plot()
和DataFrame.box.plot()
或DataFrame.boxplot()
来可视化每列中值的分布。
例如,这里是一个箱形图,表示对[0,1)
上的统一随机变量的10
次观察的五次试验。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()
执行上面示例代码,得到以下结果 -
六、块型图
可以使用Series.plot.area()
或DataFrame.plot.area()
方法创建区域图形。
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()
执行上面示例代码,得到以下结果 -
七、散点图
可以使用DataFrame.plot.scatter()
方法创建散点图。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')
执行上面示例代码,得到以下结果 -
八、饼状图
饼状图可以使用DataFrame.plot.pie()
方法创建。
import pandas as pd
import numpy as np df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)
执行上面示例代码,得到以下结果 -
公众号python社区营
Python数据分析:手把手教你用Pandas生成可视化图表的更多相关文章
- 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(9):Pandas (八)数据预处理(2)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(13):Pandas (十二)数据表拼接
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(3):Pandas (二)数据结构 Series
在家为国家做贡献太无聊,不如跟我一起学点 Python 顺便问一下,你们都喜欢什么什么样的文章封面图,老用这一张感觉有点丑 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析( ...
- 小白学 Python 数据分析(7):Pandas (六)数据导入
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(8):Pandas (七)数据预处理
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(10):Pandas (九)数据运算
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
随机推荐
- Mac OSX原生读写NTFS功能开启方法
macOX系统内建的NTFS支持默认只能读不能写 原生读写NTFS,需要自行终端命令手动开启 1. 插上磁盘 此时Mac桌面应该会显示出插入的磁盘,但是当你想把文件拖入磁盘的时候,发现是不能拖进去的, ...
- android学习——Android Layout标签之-viewStub,requestFocus,merge,include
定义Android Layout(XML)时,有四个比较特别的标签是非常重要的,其中有三个是与资源复用有关,分别是<viewStub/>, <requestFocus />, ...
- RequestMapping中produces属性作用
注解RequestMapping中produces属性可以设置返回数据的类型以及编码,可以是json或者xml: @RequestMapping(value="/xxx",prod ...
- poj 3743 LL’s cake (PSLG,Accepted)
3743 -- LL’s cake 搞了好久都过不了,看了下题解是用PSLG来做的.POJ 2164 && LA 3218 Find the Border (Geometry, PSL ...
- 2019-11-17-dotnet-C#-获取本机外网-IP-地址
title author date CreateTime categories dotnet C# 获取本机外网 IP 地址 lindexi 2019-11-17 16:38:10 +0800 201 ...
- 第三期 第三期 搜索——1.运动规划(motion_planing)
运动规划的根本问题在于机器人可能存在于一个这样的世界中, 它可能想找到一条到达这个目标的路径,那么就需要指定一个到达那里的计划, 自动驾驶汽车也会遇到这个问题.他可能处于高速公路的附近的街道网络中,他 ...
- 从浏览器的url中获取查询字符串的参数
正则表达式: function getQuery(name){ var reg = new RegExp("(^|&)" + name + "=([^&] ...
- 洛谷P5020 货币系统 题解 模拟
题目链接:https://www.luogu.org/problem/P5020 这道题目是一道模拟题,但是又有一点多重背包的思想在里面. 首先我们定义一个 vis[i] 来表示和为 i 的情况在之前 ...
- JAVA总结---序列化的三种方式
序列化和反序列化 序列化:可以将对象转化成一个字节序列,便于存储. 反序列化:将序列化的字节序列还原 优点:可以实现对象的"持久性", 所谓持久性就是指对象的生命周期不取决于程序. ...
- 使用Fiddler抓取微信饿了么小程序数据
使用Fiddler抓取微信饿了么小程序数据 准备 一部装载Android 7.0以下的手机:此处使用华为荣耀5x 微信小程序7.0以下版本:此处为6.6.7.此处可通过豌豆荚应用下载. 安装好的Fid ...