鬼斧神工:求n维球的体积
原文地址:http://spaces.ac.cn/archives/3154/
原文作者:苏剑林
标准思路
简单来说,\(n\)维球体积就是如下\(n\)重积分
\[V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}\mathrm{d}x_1 \mathrm{d}x_2\dots \mathrm{d}x_n\]
用更加几何的思路,我们通过一组平行面(\(n−1\)维的平行面)分割,使得n维球分解为一系列近似小柱体,因此,可以得到递推公式
\[V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)\mathrm{d}t\]
设\(t=r\sin\theta_1\),就有
\[V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 \mathrm{d}\theta_1\]
迭代一次就有
\[V_n (r)=r^2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-2} \left(r\cos\theta_1\cos\theta_2\right)\cos\theta_1\cos^2\theta_2 \mathrm{d}\theta_1 \mathrm{d}\theta_2\]
迭代\(n−1\)次
\[\begin{align*}V_n (r)=&r^{n-1}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_1\left(r\cos\theta_1\cos\theta_2\dots \cos\theta_{n-1}\right)\times\\
&\cos\theta_1\cos^2\theta_2\dots\cos^{n-1}\theta_{n-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2\dots \mathrm{d}\theta_{n-1}\end{align*}\]
其中\(V_1(r)=2r\),即两倍半径长的线段。从而
\[V_n (r)=2r^{n}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\theta_1\cos^3\theta_2\dots\cos^{n}\theta_{n-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2\dots \mathrm{d}\theta_{n-1}\]
完成这个积分,最终就得到n维球体积的公式,这个积分自然是可以求出来的(只是\(n−1\)个一维积分的乘积)。但是这样的步骤太不容易了,为了将其跟伽马函数联系起来,还要做很多工作。总的来说,这是一个不容易记忆、也不怎么漂亮的标准方法。
绝妙思路
有一个利用高斯积分的绝妙技巧,能够帮助我们直接将球体积跟伽马函数联系起来,整个过程堪称鬼斧神工,而且给人“仅此一家,别无分号”的感觉。据说这个技巧为物理系学生所知晓,我是从百读文库看到的,原始来源则是《热力学与统计力学》顾莱纳(德),例5.2 理想气体的熵的统计计算。
这一绝妙的思路,始于我们用两种不同的思路计算高斯积分
\[\begin{align*}
G(n)=\int_{-\infty}^{+\infty}\dots\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} \exp\left(-x_1^2-x_2^2-\dots-x_n^2\right)\mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n\tag{1}
\end{align*}\]
一方面,将\((1)\)当作\(n\)次累次积分,因为我们已经算得
\[\int_{-\infty}^{+\infty}\exp(-t^2)\mathrm{d}t=\sqrt{\pi}\]
而\((1)\)只不过是这样的\(n\)个积分的乘积,因此
\[\begin{align*}
G(n)=\pi^{n/2}\tag{2}
\end{align*}\]
另一方面,将\((1)\)当作\(n\)重积分,由于积分变量只是跟径向长度\(r=\sqrt{x_1^2+x_2^2+\dots+x_n^2}\)有关的变量,因此很容易联想到球坐标,在\(n\)维空间中,可以称为“超球坐标”,不需要将超球坐标完整写出来,只需要注意到,球内的积分,可以化为先对“球壳”进行积分,然后再对球半径进行积分。
\[\begin{align*}
G(n)=\int_{0}^{+\infty}\mathrm{d}r\int_{S_n(r)}\exp\left(-r^2\right)\mathrm{d}S_n\tag{3}
\end{align*}\]
这里的\(S_n(r)\)是半径为\(r\)的\(n\)维球体表面(以及表面积,在不至于混淆的情况下,这里不作区分)。但是注意到,被积函数只跟\(r\)有关,因此对球表面进行积分,等价于原函数乘以球的表面积而已,因此\((2)\)式的结果为
\[\begin{align*}
G(n)=\int_{0}^{+\infty}\mathrm{d}r\exp\left(-r^2\right)S_n(r)\tag{4}
\end{align*}\]
虽然我们不知道\(n\)维球的体积和表面积公式,但是我们可以肯定,\(n\)维球的体积一定正比于\(r^n\),即有
\[V_n (r)=V_n(1)r^n\]
球的表面积,就是球体积的一阶导数(考虑球壳分割),那么
\[S_n (r)=n V_n(1)r^{n-1}\]
代入\((4)\),得到
\[\begin{align*}G(n)=&n V_n(1)\int_{0}^{+\infty}r^{n-1}\exp\left(-r^2\right)\mathrm{d}r\\
=&\frac{1}{2}n V_n(1)\int_{0}^{+\infty}(r^2)^{n/2-1}\exp\left(-r^2\right)\mathrm{d}(r^2)\\
=&\frac{1}{2}n V_n(1)\int_{0}^{+\infty}z^{n/2-1}\exp\left(-z\right)\mathrm{d}z\quad\left(z=r^2\right)\\
=&\frac{1}{2}n V_n(1)\Gamma\left(\frac{n}{2}\right)\tag{5}\end{align*}\]
结合\((2)\)得
\[\pi^{n/2}=G(n)=\frac{1}{2}n V_n(1)\Gamma\left(\frac{n}{2}\right)\]
从而
\[V_n(1)=\frac{\pi^{n/2}}{\frac{1}{2}n\Gamma\left(\dfrac{n}{2}\right)}=\frac{\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}+1\right)}\]
最后
\[\Large\boxed{\displaystyle V_n(r)=\frac{\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}+1\right)}r^n}\]
就这样得到了\(n\)维球体积公式!!对\(r\)求导得到\(n\)维球表面积公式
\[\Large\boxed{\displaystyle S_n(r)=\frac{2\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}\right)}r^{n-1}}\]
结合前后两个方法,就得到
\[\large\boxed{\displaystyle \color{red}{\frac{\pi^{n/2}}{\Gamma\left(\dfrac{n}{2}+1\right)}=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\dots\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2\theta_1\cos^3\theta_2\dots\cos^{n}\theta_{n-1} \mathrm{d}\theta_1 \mathrm{d}\theta_2\dots \mathrm{d}\theta_{n-1}}}\]
鬼斧神工:求n维球的体积的更多相关文章
- 关于Euler-Poisson积分的几种解法
来源:https://www.cnblogs.com/Renascence-5/p/5432211.html 方法1:因为积分值只与被积函数和积分域有关,与积分变量无关,所以\[I^{2}=\left ...
- POJ 2208 Pyramids(求四面体体积)
Description Recently in Farland, a country in Asia, a famous scientist Mr. Log Archeo has discovered ...
- hdu 3642 体积并
题意:求三个矩形体积的并 链接:点我 枚举z #include<stdio.h> #include<iostream> #include<stdlib.h> #in ...
- 瘋子C++笔记
瘋耔C++笔记 欢迎关注瘋耔新浪微博:http://weibo.com/cpjphone 参考:C++程序设计(谭浩强) 参考:http://c.biancheng.net/cpp/biancheng ...
- BZOJ-3225 立方体覆盖 线段树+扫描线+乱搞
看数据范围像是个暴力,而且理论复杂度似乎可行,然后被卡了两个点...然后来了个乱搞的线段树+扫描线.. 3225: [Sdoi2008]立方体覆盖 Time Limit: 2 Sec Memory L ...
- HDU4276 The Ghost Blows Light(树形DP+背包)
题目大概说一棵n个结点树,每个结点都有宝藏,走过每条边要花一定的时间,现在要在t时间内从结点1出发走到结点n,问能获得最多的宝藏是多少. 放了几天的题,今天拿出来集中精力去想,还是想出来了. 首先,树 ...
- [收藏夹整理]OpenCV部分
OpenCV中文论坛 OpenCV论坛 opencv视频教程目录(初级) OpenCV 教程 Opencv感想和一些分享 tornadomeet 超牛的大神 [数字图像处理]C++读取.旋转和保存bm ...
- ZOJ 3866 - Cylinder Candy
3866 - Cylinder Candy Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu ...
- 山东省第三届ACM省赛
Solved ID PID Title Accepted Submit A 2407 Impasse (+) 0 0 B 2415 Chess 0 0 C 2414 An interest ...
随机推荐
- 【已解决】[求助] 求虚拟机防检测代码-VM虚拟机防游戏检测(虚拟机躲避游戏检测工具)
[已解决][求助] 求虚拟机防检测代码 虚拟机如何躲过游戏等软件的检测,并能用vmware tools: 先把vmtools安装好后! 然后用这代码 monitor_control.restric ...
- Python-Django学习笔记(三)-Model模型的编写以及Oracle数据库的配置
Django使用的 MTV 设计模式(Models.Templates.Views) 因此本节将围绕这三部分并按照这个顺序来创建第一个页面 模型层models.py 模型是数据唯一而且准确的信息来源. ...
- CLOUD将excel数据引入单据体
http://club.kingdee.com/forum.php?mod=viewthread&tid=989239 http://club.kingdee.com/forum.php?mo ...
- Jenkins +Ant +Jmeter(apache-jmeter-5.1.1)自动化性能测试平台
1.安装配置好Jdk, 下载网址:https://www.cr173.com/soft/33894.html 2.Jmeter下载地址:http://jmeter.apache.org/downloa ...
- HTML文本域标签
textarea文本域 cols指定列数 rows行数(不够用会自动扩容)
- AcWing 1016. 最大上升子序列和
#include<iostream> using namespace std ; ; int f[N]; int a[N]; int main() { int n; cin>> ...
- centos7添加搜狗输入法
https://www.cnblogs.com/eeexu123/p/9259430.html https://blog.csdn.net/jpch89/article/details/8190380 ...
- RFC3984: RTP Payload Format for H.264 Video(中文版)
转载地址:https://blog.csdn.net/h514434485/article/details/51010950 官方文档,中文版本地址:http://www.rosoo.net/File ...
- java多线程--死锁
1. Java中导致死锁的原因 Java中死锁最简单的情况是,一个线程T1持有锁L1并且申请获得锁L2,而另一个线程T2持有锁L2并且申请获得锁L1,因为默认的锁申请操作都是阻塞的,所以线程T1和T2 ...
- C++-POJ1200-Crazy Search[hash]
由于已经给出字符只有NC种,故可以把子串视为一个NC进制的数,以此构造hash函数就可以了 #include <set> #include <map> #include < ...