其中高精度乘法通过了POJ2389,其他没有测过,不过应该是没有问题的。

其中高精度除法返回一对string,分别表示商和余数。

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010; int a[maxn], b[maxn], res[maxn]; string add(string s1, string s2) { // under condition: s1,s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = max(n, m) + 1;
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < len; i ++) {
res[i] += a[i] + b[i];
if (res[i] >= 10) {
res[i+1] += res[i] / 10;
res[i] %= 10;
}
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
} string sub(string s1, string s2) { // under condition: s1>=s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = max(n, m);
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < len; i ++) {
res[i] += a[i] - b[i];
if (res[i] < 0) {
res[i+1] --;
res[i] += 10;
}
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
} bool cmp(string s1, string s2) { // under condition: s1,s2 >= 0
int n = s1.length(), m = s2.length();
int i;
for (i = 0; i < n-1 && s1[i] == '0'; i ++);
s1 = s1.substr(i);
for (i = 0; i < m-1 && s2[i] == '0'; i ++);
s2 = s2.substr(i);
if (s1.length() != s2.length()) return s1.length() < s2.length();
return s1 < s2;
} string Add(string s1, string s2) {
if (s1[0] == '-' && s2[0] == '-') {
return "-" + add(s1.substr(1), s2.substr(1));
}
else if (s1[0] == '-') {
s1 = s1.substr(1);
if (cmp(s1, s2) == true) {
return sub(s2, s1);
} else {
return "-" + sub(s1, s2);
}
}
else if (s2[0] == '-') {
s2 = s2.substr(1);
if (cmp(s1, s2) == true) {
return "-" + sub(s2, s1);
} else {
return sub(s1, s2);
}
}
else {
return add(s1, s2);
}
} string Sub(string s1, string s2) {
if (s2[0] == '-') {
s2 = s2.substr(1);
return Add(s1, s2);
}
else {
return Add(s1, "-" + s2);
}
} string multi(string s1, string s2) { // under condition: s1,s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = n + m;
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < n; i ++)
for (int j = 0; j < m; j ++)
res[i+j] += a[i] * b[j];
for (int i = 0; i < len; i ++) {
res[i+1] += res[i] / 10;
res[i] %= 10;
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
} pair<string, string> divide(string s1, string s2) { // under condition: s1>=0,s2>0
string s = "", t = "";
int n = s1.length(), m = s2.length();
bool flag = false;
for (int i = 0; i < n; i ++) {
s += s1[i];
int num = 0;
while (cmp(s, s2) == false) {
num ++;
s = sub(s, s2);
}
if (num > 0) {
flag = true;
char c = (char)(num + '0');
t += c;
}
else if (flag) {
t += '0';
}
}
if (t.length() == 0) t = "0";
while (s[0] == '0' && s.length() > 1) s = s.substr(1);
return make_pair(t, s);
} string s1, s2; int main() {
while (cin >> s1 >> s2) {
cout << "add:\t" << Add(s1, s2) << endl;
cout << "sub:\t" << Sub(s1, s2) << endl;
cout << "multi:\t" << multi(s1, s2) << endl;
pair<string, string> divide_pair = divide(s1, s2);
cout << "divide:\t" << divide_pair.first << " ...... " << divide_pair.second << endl;
}
return 0;
}

测试数据:

100 9
add: 109
sub: 91
multi: 900
divide: 11 ...... 1
1000000 87
add: 1000087
sub: 999913
multi: 87000000
divide: 11494 ...... 22

C++高精度加减乘除模板的更多相关文章

  1. ACM高精度加减乘除模板

    [转]#include <iostream> #include <string> using namespace std; inline int compare(string ...

  2. c++的正整数高精度加减乘除

    数值计算之高精度加减乘除 一.      高精度正整数的高精度计算 1.加法 2.减法 减法和加法的最大区别在于:减法是从高位开始相减,而加法是从低位开始相加 3.乘法:用高精度加法实现 l 乘法的主 ...

  3. C++高精度整数加减乘除模板

    其中高精度乘法通过了POJ2389,其他没有测过,不过应该是没有问题的. 其中高精度除法返回一对string,分别表示商和余数. 代码: #include <bits/stdc++.h> ...

  4. H. GSS and Simple Math Problem 高精度乘法模板

    链接:https://www.nowcoder.com/acm/contest/104/G来源:牛客网 题目描述 Given n positive integers , your task is to ...

  5. Hdu 4762 网络赛 高精度大数模板+概率

    注意题目中的这句话he put the strawberries on the cake randomly one by one,第一次选择草莓其实有N个可能,以某一个草莓为开头,然后顺序的随机摆放, ...

  6. 【高精度】模板 (C++)

    //n为长度 1.高精加 复杂度:O(n) #include<iostream> #include<cstring> #include<algorithm> usi ...

  7. 洛谷 P2142 高精度减法(模板)

    题目描述 高精度减法 输入输出格式 输入格式: 两个整数a,b(第二个可能比第一个大) 输出格式: 结果(是负数要输出负号) 输入输出样例 输入样例#1: 2 1 输出样例#1: 1 说明 20%数据 ...

  8. 大数高精度加减乘除 51nod 1005 大数加法

    1005 大数加法 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出2个大整数A,B,计算A+B的结果. Input 第1行:大数A 第2行:大数B ...

  9. 高精度乘法模板(luogu1303)

    洛谷1303 //luogu1303,不压位的高精度乘法 #include <cstdio> #include <iostream> using namespace std; ...

随机推荐

  1. day37 10-SH整合的案例练习

    <set name="orders" cascade="delete"> 如果没有在Customer.hbm.xml中配置级联删除,删除客户的时候默 ...

  2. HR招聘_(九)_招聘方法论(面试环节·薪资谈判和心理把控)

    .薪资谈判 薪资谈判在整个过程中非常重要,如果这一环出现问题前期的所有付出都功亏一篑,无法达成招聘目标. 谈判过程中需要遵循以下原则: 明确 通过面试后需要再次确认候选人的目前薪资和期望,虽然第一次电 ...

  3. Python运用于数据分析的简单教程

    Python运用于数据分析的简单教程 这篇文章主要介绍了Python运用于数据分析的简单教程,主要介绍了如何运用Python来进行数据导入.变化.统计和假设检验等基本的数据分析,需要的朋友可以参考下 ...

  4. 用Direct2D和DWM来做简单的动画效果

    原文:用Direct2D和DWM来做简单的动画效果 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/sunnyloves/article/detail ...

  5. java 使用 POI 操作 XWPFDocumen 创建和读取 Office Word 文档基础篇

    注:有不正确的地方还望大神能够指出,抱拳了 老铁! 参考 API:http://poi.apache.org/apidocs/org/apache/poi/xwpf/usermodel/XWPFDoc ...

  6. Linux的一些简单命令操作总结

    防火墙 查看防火墙状态 systemctl status iptables (或service iptables status) 关闭防火墙 systemctl stop iptables(或serv ...

  7. day39-Spring 06-Spring的AOP:带有切点的切面

    环绕增强功能是最强的,它相当于前置增强和后置增强. 这就是带有切点的切面 package cn.itcast.spring3.demo4; import org.aopalliance.interce ...

  8. js遮罩

    1.1 背景半透明遮罩层样式 需要一个黑色(当然也可以其他)背景,且须设置为绝对定位,以下是项目中用到的css样式: /* 半透明的遮罩层 */ #overlay { background: #000 ...

  9. 2019-6-23-开源项目使用-appveyor-自动构建

    title author date CreateTime categories 开源项目使用 appveyor 自动构建 lindexi 2019-06-23 11:47:40 +0800 2019- ...

  10. uml图的五种关系 标签: uml 2016-12-18 21:47 221人阅读 评论(25) 收藏

    统一建模语言 Unified Modeling Language (UML)又称统一建模语言或标准建模语言,是始于1997年一个OMG标准,它是一个支持模型化和软件系统开发的图形化语言,为软件开发的所 ...