题目链接

Emma is really fond of integers and loves playing with them. Her friends were jealous, and to test her, one of them gave her a problem. 
Emma is given a list A of N integers and is asked a set of Q queries. Each query is denoted by an integer K, for which you have to return the sum of product of all possible sublists having exactly K elements. 
Emma has got stuck in this problem and you being her best friend have decided to help her write a code to solve it. Since the answers can be very large, print the answers modulo100003.

Input Format
First line has an integer N, denoting the number of integers in list A. Next line contains N space separated integers. The third line contains integer Q, and next Q lines have a single integer K.

Output Format
For each of the queries, print the corresponding answer in a new line.

NOTE Sublist here refers to selecting K elements from a list of N elements. There will be (NK) ways to do that, it doesn't matter if two elements are same.

Constraints
1≤N≤3×104 
1≤Ai≤105 
1≤Q≤N 
1≤K≤N

Sample Input #00

3
1 2 3
2
1
2

Sample Output #00

6
11

Sample Input #01

3
1 2 2
1
2

Sample Output #01

8

Explanation

Sample #00: 
For K=1 possible sublists are {1},{2},{3} so answer is 1+2+3=6. 
For K=2 possible sublists are {1,2},{2,3},{3,1} so answer is (1×2)+(2×3)+(3×1)=2+6+3=11.

Sample #01: 
For K=2 possible sublists are {1,2},{2,2},{2,1} so answer is (1×2)+(2×2)+(2×1)=2+4+2=8.

题意:给出n个数,有q次询问,每次询问一个k,从n个数中选出k个数,对这k个数做乘积,求所有可能的选法的和。

我们把每个数看做一个多项式:x + A[i], 那么就可以得到n个这样的多项式。 将这n个多项式相乘,

那么k对应的查询的答案就是多项式中x^k项的系数,和母函数有点类似。

下面就是如何计算n个多项式的乘积,想到用FFT,但是不可以直接线性的计算这n个多项式的乘积,时间复杂度

太高,所以想到分治的思想,总的复杂度就是O(n*(log(n)^2))

Accepted Code:

 #define _CRT_SECURE_NO_WARNINGS
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <bitset>
#include <complex>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii;
typedef long long ll; typedef vector<long long> vl; typedef pair<long long,long long> pll; typedef vector<pair<long long,long long> > vpll;
typedef vector<string> vs; typedef long double ld;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } typedef long double Num; //??????long double?????
const Num PI = .141592653589793238462643383279L;
typedef complex<Num> Complex;
//n?????
//a?????
void fft_main(int n, Num theta, Complex a[]) {
for(int m = n; m >= ; m >>= ) {
int mh = m >> ;
Complex thetaI = Complex(, theta);
rep(i, mh) {
Complex w = exp((Num)i*thetaI);
for(int j = i; j < n; j += m) {
int k = j + mh;
Complex x = a[j] - a[k];
a[j] += a[k];
a[k] = w * x;
}
}
theta *= ;
}
int i = ;
reu(j, , n-) {
for(int k = n >> ; k > (i ^= k); k >>= ) ;
if(j < i) swap(a[i], a[j]);
}
} void fft(int n, Complex a[]) { fft_main(n, * PI / n, a); }
void inverse_fft(int n, Complex a[]) { fft_main(n, - * PI / n, a); } void convolution(vector<Complex> &v, vector<Complex> &w) {
int n = , vwn = v.size() + w.size() - ;
while(n < vwn) n <<= ;
v.resize(n), w.resize(n);
fft(n, &v[]);
fft(n, &w[]);
rep(i, n) v[i] *= w[i];
inverse_fft(n, &v[]);
rep(i, n) v[i] /= n;
} const int MOD = ; vector<int> calc_dfs(const vector<int> &A, int l, int r) {
if(r - l == ) {
vector<int> res();
res[] = ;
res[] = A[l];
return res;
}
int mid = (l + r) / ;
vector<int> L = calc_dfs(A, l, mid), R = calc_dfs(A, mid, r);
vector<Complex> Lc(all(L)), Rc(all(R));
convolution(Lc, Rc);
int n = L.size() + R.size() - ;
vector<int> res(n);
rep(i, n) res[i] = (long long)(Lc[i].real() + .) % MOD;
// cerr << "["<< l << "," << r <<"): ";
// rep(i, n) cerr << res[i] << ", "; cerr << endl;
return res;
} int main() {
int N;
scanf("%d", &N);
vector<int> A(N);
rep(i, N) {
scanf("%d", &A[i]);
A[i] %= MOD;
}
vector<int> ans = calc_dfs(A, , N);
int Q;
scanf("%d", &Q);
rep(ii, Q) {
int K;
scanf("%d", &K);
printf("%d\n", ans[K]);
}
return ;
}

Hackerrank--Emma and sum of products (FFT)的更多相关文章

  1. [CF1519D] Maximum Sum of Products (暴力)

    题面 有两个长为 n n n 的序列 a a a 和 b b b,至多反转 a a a 的一个子区间,最大化 ∑ i = 1 n a i ⋅ b i \sum_{i=1}^na_i\cdot b_i ...

  2. 1305 Pairwise Sum and Divide(数学 ,规律)

    HackerRank   1305 Pairwise Sum and Divide   有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整:   fun(A)     sum = ...

  3. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  4. HDU - 5307 :He is Flying (分治+FFT)(非正解)

    JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...

  5. Fast Fourier Transform

    写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...

  6. SQL Server(三):Select语句

      1.最基本的Select语句: Select [Top n [With Ties]] <*|Column_Name [As <Alias>][, ...n]> From & ...

  7. cf #365b 巧妙的统计

     Mishka and trip time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  8. 用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪

    前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个 ...

  9. codeforces 86D : Powerful array

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

随机推荐

  1. selenium学习笔记11——driver.get(url) 页面加载时间太长

    在执行自动化测试用例过程中,发现因为网络慢或其他原因导致driver.get(url) 时,页面一直在加载,页面没有加载完成就不会去继续执行下面的动作,但是实际上需要操作的元素已经加载出来了. 解决方 ...

  2. CentOS7配置Docker镜像加速器

    1. 将默认的配置文件复制出来 cp -n /lib/systemd/system/docker.service /etc/systemd/system/docker.service 2. 将加速器地 ...

  3. sqlite3加密

    最近因为工作原因,需要使用sqlite数据库.sqlite数据库小并且使用方便,感觉挺不错的.但有一个不足就是没有对数据库进行加密,不过好的是sqlite预留有加密的接口,我们可以直接调用即可.我也是 ...

  4. hibernate使用truncate清空表 截断表

    public void truncateTable(Session session, String tableNameInDb) { String sql = " truncate tabl ...

  5. 关于不同数据库的连接配置(MySql和Oracle)

    mysql: driverClass=com.mysql.jdbc.Driver #在和mysql传递数据的过程中,使用unicode编码格式,并且字符集设置为utf-8,插入数据库防止中文乱码 ur ...

  6. Python学习day37-并发编程(3)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  7. Python学习day13-函数进阶(1)

    Python学习day13-函数进阶(1) 闭包函数 闭包函数,从名字理解,闭即是关闭,也就是说把一个函数整个包起来.正规点说就是指函数内部的函数对外部作用域而非全局作用域的引用. 为函数传参的方式有 ...

  8. @RestControllerAdvice作用及原理

    原文:Spring Boot 系列(八)@ControllerAdvice 拦截异常并统一处理 在spring 3.2中,新增了@ControllerAdvice 注解,可以用于定义@Exceptio ...

  9. css 超出两行省略号,超出一行省略号

    参考:https://www.cnblogs.com/yangguojin/p/10301981.html 超出一行省略: p{ white-space:nowrap; overflow:hidden ...

  10. python-web-习题

    1.简单描述 webbrowser.requests.BeautifulSoup 和 selenium 模块之间的不同 webbrowser模块有一个 open() 方法,它启动 web 浏览器,打开 ...