题目链接

Emma is really fond of integers and loves playing with them. Her friends were jealous, and to test her, one of them gave her a problem. 
Emma is given a list A of N integers and is asked a set of Q queries. Each query is denoted by an integer K, for which you have to return the sum of product of all possible sublists having exactly K elements. 
Emma has got stuck in this problem and you being her best friend have decided to help her write a code to solve it. Since the answers can be very large, print the answers modulo100003.

Input Format
First line has an integer N, denoting the number of integers in list A. Next line contains N space separated integers. The third line contains integer Q, and next Q lines have a single integer K.

Output Format
For each of the queries, print the corresponding answer in a new line.

NOTE Sublist here refers to selecting K elements from a list of N elements. There will be (NK) ways to do that, it doesn't matter if two elements are same.

Constraints
1≤N≤3×104 
1≤Ai≤105 
1≤Q≤N 
1≤K≤N

Sample Input #00

3
1 2 3
2
1
2

Sample Output #00

6
11

Sample Input #01

3
1 2 2
1
2

Sample Output #01

8

Explanation

Sample #00: 
For K=1 possible sublists are {1},{2},{3} so answer is 1+2+3=6. 
For K=2 possible sublists are {1,2},{2,3},{3,1} so answer is (1×2)+(2×3)+(3×1)=2+6+3=11.

Sample #01: 
For K=2 possible sublists are {1,2},{2,2},{2,1} so answer is (1×2)+(2×2)+(2×1)=2+4+2=8.

题意:给出n个数,有q次询问,每次询问一个k,从n个数中选出k个数,对这k个数做乘积,求所有可能的选法的和。

我们把每个数看做一个多项式:x + A[i], 那么就可以得到n个这样的多项式。 将这n个多项式相乘,

那么k对应的查询的答案就是多项式中x^k项的系数,和母函数有点类似。

下面就是如何计算n个多项式的乘积,想到用FFT,但是不可以直接线性的计算这n个多项式的乘积,时间复杂度

太高,所以想到分治的思想,总的复杂度就是O(n*(log(n)^2))

Accepted Code:

 #define _CRT_SECURE_NO_WARNINGS
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <bitset>
#include <complex>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii;
typedef long long ll; typedef vector<long long> vl; typedef pair<long long,long long> pll; typedef vector<pair<long long,long long> > vpll;
typedef vector<string> vs; typedef long double ld;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } typedef long double Num; //??????long double?????
const Num PI = .141592653589793238462643383279L;
typedef complex<Num> Complex;
//n?????
//a?????
void fft_main(int n, Num theta, Complex a[]) {
for(int m = n; m >= ; m >>= ) {
int mh = m >> ;
Complex thetaI = Complex(, theta);
rep(i, mh) {
Complex w = exp((Num)i*thetaI);
for(int j = i; j < n; j += m) {
int k = j + mh;
Complex x = a[j] - a[k];
a[j] += a[k];
a[k] = w * x;
}
}
theta *= ;
}
int i = ;
reu(j, , n-) {
for(int k = n >> ; k > (i ^= k); k >>= ) ;
if(j < i) swap(a[i], a[j]);
}
} void fft(int n, Complex a[]) { fft_main(n, * PI / n, a); }
void inverse_fft(int n, Complex a[]) { fft_main(n, - * PI / n, a); } void convolution(vector<Complex> &v, vector<Complex> &w) {
int n = , vwn = v.size() + w.size() - ;
while(n < vwn) n <<= ;
v.resize(n), w.resize(n);
fft(n, &v[]);
fft(n, &w[]);
rep(i, n) v[i] *= w[i];
inverse_fft(n, &v[]);
rep(i, n) v[i] /= n;
} const int MOD = ; vector<int> calc_dfs(const vector<int> &A, int l, int r) {
if(r - l == ) {
vector<int> res();
res[] = ;
res[] = A[l];
return res;
}
int mid = (l + r) / ;
vector<int> L = calc_dfs(A, l, mid), R = calc_dfs(A, mid, r);
vector<Complex> Lc(all(L)), Rc(all(R));
convolution(Lc, Rc);
int n = L.size() + R.size() - ;
vector<int> res(n);
rep(i, n) res[i] = (long long)(Lc[i].real() + .) % MOD;
// cerr << "["<< l << "," << r <<"): ";
// rep(i, n) cerr << res[i] << ", "; cerr << endl;
return res;
} int main() {
int N;
scanf("%d", &N);
vector<int> A(N);
rep(i, N) {
scanf("%d", &A[i]);
A[i] %= MOD;
}
vector<int> ans = calc_dfs(A, , N);
int Q;
scanf("%d", &Q);
rep(ii, Q) {
int K;
scanf("%d", &K);
printf("%d\n", ans[K]);
}
return ;
}

Hackerrank--Emma and sum of products (FFT)的更多相关文章

  1. [CF1519D] Maximum Sum of Products (暴力)

    题面 有两个长为 n n n 的序列 a a a 和 b b b,至多反转 a a a 的一个子区间,最大化 ∑ i = 1 n a i ⋅ b i \sum_{i=1}^na_i\cdot b_i ...

  2. 1305 Pairwise Sum and Divide(数学 ,规律)

    HackerRank   1305 Pairwise Sum and Divide   有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整:   fun(A)     sum = ...

  3. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  4. HDU - 5307 :He is Flying (分治+FFT)(非正解)

    JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...

  5. Fast Fourier Transform

    写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...

  6. SQL Server(三):Select语句

      1.最基本的Select语句: Select [Top n [With Ties]] <*|Column_Name [As <Alias>][, ...n]> From & ...

  7. cf #365b 巧妙的统计

     Mishka and trip time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  8. 用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪

    前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个 ...

  9. codeforces 86D : Powerful array

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

随机推荐

  1. tbody设置超出固定的高度出现滚动条,没超出不显示。

    没有超出时显示样式,不显示滚动条: 超出时显示滚动条: 1.html <table class="table"> <thead> <tr> &l ...

  2. 2016.11.5初中部上午NOIP普及组比赛总结

    2016.10.29初中部上午NOIP普及组 这次比赛算是考的最差的一次之一了,当中有四分之三是DP. 进度: 比赛:没分+0+没分+40=40 改题:AC+0+没分+40=140 TurnOffLi ...

  3. Android基础控件ToggleButton和Switch开关按钮

    1.简介 ToggleButton和Switch都是开关按钮,只不过Switch要Android4.0之后才能使用! ToggleButton <!--checked 是否选择--> &l ...

  4. 自定义HtmlHelper扩展方法

    核心:通过TagBuilder类实现Html元素的创建 TagBuilder: 前台调用: @Html.Messger("tag","span-tag", @V ...

  5. 安卓自定义View进阶-Canvas之画布操作 转载

    安卓自定义View进阶-Canvas之画布操作 转载 https://www.gcssloop.com/customview/Canvas_Convert 本来想把画布操作放到后面部分的,但是发现很多 ...

  6. ionic view 视图

    ionic view  方法 $ionicView.loaded 视图已经被加载了.这事件只发生一次当视图被创建并添加到Dom中.当跳出页面并且被缓存了的话,再次访问这个页面时这个时间将不会被激活.L ...

  7. Django项目:CRM(客户关系管理系统)--76--66PerfectCRM实现CRM课程作业排名

    # classtop_urls.py # ————————64PerfectCRM实现CRM课程排名详情———————— from django.conf.urls import url from b ...

  8. git简单使用命令

    每次都会忘记git使用命令 在本上做了笔记,网上也备份一份吧 这个是删除步骤: 拉取远程的Repo到本地(如果已经在本地,可以略过) $ git clone xxxxxx 在本地仓库删除文件  $ g ...

  9. redhat linux卸载自带的Java1.4.2安装JDK6

    一.卸载jdk1.4 由于Redhat Enterprise Linux 5.6 中自带安装了jdk1.4.2的,所以在安装jdk1.6前我把jdk1.4.2的卸了,步骤如下: 1.打开终端输入 yu ...

  10. mysql innodb 的 逻辑存储结构

    如上图: innodb 的 逻辑存储单元分成 表空间,段,区,页 4个等级 默认情况下,一个数据库 所有变共享一个 默认的表空间(tablespan).可以指定每个表一个表空间. 一个表空间管理着 多 ...