1152E - Neko and Flashback

题意:对于长为n的序列c和长为n - 1的排列p,我们可以按照如下方法得到长为n - 1的序列a,b,a',b'。

ai = min(ci, ci+1),bi = max(ci, ci+1)

a'i = ap[i],b'i = bp[i]

现在给定a'和b',求一个合法的c或者无解。

解:仔细分析性质,发现在a和b中,c除了开头和结尾会出现1次之外,每个数都会出现两次,且相邻。

我们可以把c的开头找出来,然后根据开头确定c2,然后确定c3...最后到cn

注意到这些数可能有重复的,于是我们要试图在中间插入一段。我一开始想的是链表后来发现很难写...

仔细分析,如果把a'和b'的每个位置当成边,数字当成点,就是求欧拉路。然后就没了......

关于欧拉路:就暴力DFS,把每条边都访问一次。回溯的时候把这条边入栈/把y入栈。

 #include <bits/stdc++.h>

 const int N = ;

 struct Edge {
int nex, v, id, pre;
}edge[N << ]; int tp = ; int X[N], xx, a[N], b[N], cnt[N], e[N], stk[N], top, deg[N];
bool vis[N]; inline void erase(int x, int i) {
int nex = edge[i].nex, pre = edge[i].pre;
if(e[x] == i && !nex) {
e[x] = ;
}
else if(e[x] == i) {
e[x] = nex;
edge[nex].pre = ;
return;
}
else if(!nex) {
edge[pre].nex = ;
}
else {
edge[nex].pre = pre;
edge[pre].nex = nex;
}
edge[i].nex = edge[i].pre = ;
return;
} inline void add(int x, int y, int z) {
edge[++tp].v = y;
edge[tp].id = z;
edge[tp].nex = e[x];
edge[e[x]].pre = tp;
e[x] = tp;
return;
} void DFS(int x) {
for(int i = e[x]; i; i = edge[i].nex) {
erase(x, i);
int y = edge[i].v;
if(vis[edge[i].id]) {
continue;
}
vis[edge[i].id] = ;
DFS(y);
stk[++top] = y;
}
return;
} int main() { int n;
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%d", &a[i]);
X[++xx] = a[i];
}
for(int j = ; j < n; j++) {
scanf("%d", &b[j]);
X[++xx] = b[j];
if(b[j] < a[j]) {
puts("-1");
return ;
}
} std::sort(X + , X + xx + );
xx = std::unique(X + , X + xx + ) - X - ;
for(int i = ; i < n; i++) {
a[i] = std::lower_bound(X + , X + xx + , a[i]) - X;
b[i] = std::lower_bound(X + , X + xx + , b[i]) - X;
add(a[i], b[i], i);
add(b[i], a[i], i);
deg[a[i]]++;
deg[b[i]]++;
}
int s = , pos = ;
for(int i = ; i <= xx; i++) {
if(deg[i] & ) {
s++;
pos = i;
}
}
if(s != && s != ) {
puts("-1");
return ;
} DFS(pos);
stk[++top] = pos;
if(top != n) {
puts("-1");
return ;
}
for(int i = top; i >= ; i--) {
printf("%d ", X[stk[i]]);
} return ;
}

AC代码

注意复杂度,删边......

 #include <bits/stdc++.h>

 const int N = ;

 struct Edge {
int nex, v, id;
}edge[N << ]; int tp = ; int X[N], xx, a[N], b[N], cnt[N], e[N], stk[N], top, deg[N];
bool vis[N]; inline void add(int x, int y, int z) {
edge[++tp].v = y;
edge[tp].id = z;
edge[tp].nex = e[x];
e[x] = tp;
return;
} void DFS(int x) {
for(int i = e[x]; i; i = e[x]) {
e[x] = edge[i].nex;
int y = edge[i].v;
if(vis[edge[i].id]) {
continue;
}
vis[edge[i].id] = ;
DFS(y);
stk[++top] = y;
}
return;
} int main() { int n;
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%d", &a[i]);
X[++xx] = a[i];
}
for(int j = ; j < n; j++) {
scanf("%d", &b[j]);
X[++xx] = b[j];
if(b[j] < a[j]) {
puts("-1");
return ;
}
} std::sort(X + , X + xx + );
xx = std::unique(X + , X + xx + ) - X - ;
for(int i = ; i < n; i++) {
a[i] = std::lower_bound(X + , X + xx + , a[i]) - X;
b[i] = std::lower_bound(X + , X + xx + , b[i]) - X;
add(a[i], b[i], i);
add(b[i], a[i], i);
deg[a[i]]++;
deg[b[i]]++;
}
int s = , pos = ;
for(int i = ; i <= xx; i++) {
if(deg[i] & ) {
s++;
pos = i;
}
}
if(s != && s != ) {
puts("-1");
return ;
} DFS(pos);
stk[++top] = pos;
if(top != n) {
puts("-1");
return ;
}
for(int i = top; i >= ; i--) {
printf("%d ", X[stk[i]]);
} return ;
}

另一种删边方式

[欧拉路]CF1152E Neko and Flashback的更多相关文章

  1. 洛谷P1341 无序字母对[无向图欧拉路]

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  2. POJ1386Play on Words[有向图欧拉路]

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11846   Accepted: 4050 De ...

  3. hdu1161 欧拉路

    欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径:(每条边只经过一次而不是点) 在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路:如果最多有2个奇数点,那么出发点和到达点必定为该2点,那 ...

  4. UVA10054The Necklace (打印欧拉路)

    题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...

  5. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  6. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  7. hihocoder 1181 欧拉路.二

    传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...

  8. hiho48 : 欧拉路·一

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的 ...

  9. hdu5883 The Best Path(欧拉路)

    题目链接:hdu5883 The Best Path 比赛第一遍做的时候没有考虑回路要枚举起点的情况导致WA了一发orz 节点 i 的贡献为((du[i] / 2) % 2)* a[i] 欧拉回路的起 ...

随机推荐

  1. 阿里云启动视频云V5计划,全面赋能生态合作伙伴

    9月25 - 27日,主题为数·智的2019云栖大会在杭州举行.在第三天的智能视频云专场中,阿里云研究员金戈首次对外发布视频云V5计划,释放视频IT基础设施红利,赋能生态合作伙伴,共促大视频产业发展. ...

  2. 精度试验结果报告Sleep, GetTickCount, timeGetTime, QueryPerformanceCounter

    一段简单的代码来实现精度试验 int main() {       // 初始化代码       ......       int i = 0;       while(i++ < 1000) ...

  3. 命令学习_nslookup

    nslookup 域名 这是最常用最简单的用法,可以直接获得目标域名的IP地址和CNAME. 如下是A记录的返回情况 nslookup命令会采用先反向解释获得使用的DNS服务器的名称,上图中ns.gu ...

  4. latex ctex 的section不能写中文, /href

    问题描述:再使用超链接 /href 后发现section{}不能写入中文,以前是好使的,经过查询验证,需要在引导区里加入 \hypersetup{CJKbookmarks=true} 即可恢复正常.

  5. Mysql优化系列之索引性能

    实际上,前面的数据类型和表结构设计优化不能算优化,只能算规范,也就是说在设计表的时候,应该且必须做到这些 索引是sql优化的核心部分,在<高性能Mysql>中单独抽出一章讲,也印证了其重要 ...

  6. 第二周课堂笔记3th and4th

    ---恢复内容开始--- 1.      list列表      可变数据类型 创建列表的方法: A=[“a”,”sda”,”2131”]   直接创建  常用的方法 B=list(“ads”)   ...

  7. 使用CEfSharp之旅(1) 加载网络页面

    原文:使用CEfSharp之旅(1) 加载网络页面 版权声明:本文为博主原创文章,未经博主允许不得转载.可点击关注博主 ,不明白的进群191065815 我的群里问 https://blog.csdn ...

  8. C# 获取今天是星期几

    //获取今天是星期几 string[] Day = new string[] { "星期日", "星期一", "星期二", "星期 ...

  9. 记录一次工作中配置的Mysql主从复制过程

    Mysql主从复制教程 1.安装mysql(安装步骤跳过)2.配置密码.(如果忘记密码或者误操作删除了root用户,使用如下命令,没有忘记就跳到3)将skip-grant-tables放在/etc/m ...

  10. Leetcode166. Fraction to Recurring Decimal分数到小数

    给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以字符串形式返回小数. 如果小数部分为循环小数,则将循环的部分括在括号内. 示例 1: 输入: numerator ...