C++返回值优化
返回值优化(Return Value Optimization,简称RVO)是一种编译器优化机制:当函数需要返回一个对象的时候,如果自己创建一个临时对象用于返回,那么这个临时对象会消耗一个构造函数(Constructor)的调用、一个复制构造函数的调用(Copy Constructor)以及一个析构函数(Destructor)的调用的代价。
经过返回值优化,就可以将成本降低到一个构造函数的代价。这样就省去了一次拷贝构造函数的调用和依次析构函数的调用。
例子如下:
class MyString {
public:
MyString() {
_data = NULL;
_len = 0;
printf("Constructor is called!\n");
}
MyString(const char* p) {
_len = strlen (p);
_init_data(p);
cout << "Constructor is called! this->_data: " << (long)_data << endl;
}
MyString(const MyString& str) {
_len = str._len;
_init_data(str._data);
cout << "Copy Constructor is called! src: " << (long)str._data << " dst: " << (long)_data << endl;
} ~MyString() {
if (_data)
{
cout << "DeConstructor is called! this->_data: " << (long)_data << endl;
free(_data);
}
else
{
std::cout << "DeConstructor is called!" << std::endl;
}
}
MyString& operator=(const MyString& str) {
if (this != &str) {
_len = str._len;
_init_data(str._data);
}
cout << "Copy Assignment is called! src: " << (long)str._data << " dst" << (long)_data << endl;
return *this;
} operator const char *() const {
return _data;
} void display() const
{
if (_data)
{
cout << "str is " << _data << "(" << (long)_data << ")" << endl;
}
else
{
cout << "nothing" << endl;
}
}
private:
char *_data;
size_t _len;
void _init_data(const char *s) {
_data = new char[_len+1];
memcpy(_data, s, _len);
_data[_len] = '\0';
}
}; MyString foo1()
{
return MyString("123");
} MyString foo2()
{
MyString str1("456");
return str1;
} int main()
{
foo1();
cout << "--------------------\n"; foo2();
cout << "--------------------\n"; MyString str1 = foo1();
cout << "--------------------\n"; MyString str2 = foo2();
cout << "--------------------\n";
return 0;
}
函数foo1直接返回一个临时对象,而foo2返回一个局部变量。在没有RVO的情况下,不管是调用foo1还是foo2,实际上都是先调用构造函数,然后调用复制构造函数构造作为返回值的临时对象。而对于str1和str2的构造,还会再次调用一次复制构造函数。上述代码,使用的编译命令为:g++ -fno-elide-constructors -o rvo rvo.cpp
-fno-elide-constructors选项可以取消编译器的 copy-elision 优化策略。得到的结果如下:
Constructor is called! this->_data: 8949776
Copy Constructor is called! src: 8949776 dst: 8949808
DeConstructor is called! this->_data: 8949776
DeConstructor is called! this->_data: 8949808
--------------------
Constructor is called! this->_data: 8949808
Copy Constructor is called! src: 8949808 dst: 8949776
DeConstructor is called! this->_data: 8949808
DeConstructor is called! this->_data: 8949776
--------------------
Constructor is called! this->_data: 8949776
Copy Constructor is called! src: 8949776 dst: 8949808
DeConstructor is called! this->_data: 8949776
Copy Constructor is called! src: 8949808 dst: 8949776
DeConstructor is called! this->_data: 8949808
--------------------
Constructor is called! this->_data: 8949808
Copy Constructor is called! src: 8949808 dst: 8949840
DeConstructor is called! this->_data: 8949808
Copy Constructor is called! src: 8949840 dst: 8949808
DeConstructor is called! this->_data: 8949840
--------------------
DeConstructor is called! this->_data: 8949808
DeConstructor is called! this->_data: 8949776
如果编译时去掉了-fno-elide-constructors选项,则编译器开启RVO,结果如下:
Constructor is called! this->_data: 34054160
DeConstructor is called! this->_data: 34054160
--------------------
Constructor is called! this->_data: 34054160
DeConstructor is called! this->_data: 34054160
--------------------
Constructor is called! this->_data: 34054160
--------------------
Constructor is called! this->_data: 34054192
--------------------
DeConstructor is called! this->_data: 34054192
DeConstructor is called! this->_data: 34054160
可见开启了RVO之后,省略了不必要的复制拷贝,开启RVO之后,函数是直接在接收返回值的地方直接构造对象。
实际上,foo1和foo2分别对应了RVO和NRVO(Named Return Value Optimization)。具名返回值优化(NRVO),是对于按值返回“具名对象”(就是有名字的变量)时的优化手段,其实道理是一样的,但由于返回的值是具名变量,情况会复杂很多。所以,能执行优化的条件更苛刻。比如函数中,在不同的返回路径上返回不同名的对象,就不会执行NRVO。
比如下面的代码:
MyString bar1(int n)
{
if (n > 2)
{
return MyString("abc");
}
else
{
return MyString("ABC");
}
} MyString bar2(int n)
{
MyString str1("abc");
MyString str2("ABC");
if (n > 2)
{
return str1;
}
else
{
return str2;
}
} int main(int argc, char **argv)
{
bar1(1);
cout << "--------------------\n"; bar2(1);
cout << "--------------------\n"; MyString str1 = bar1(1);
cout << "--------------------\n"; MyString str2 = bar2(1);
cout << "--------------------\n";
return 0;
}
函数bar1返回临时对象,bar2返回具名对象,也就是说,如果执行优化的话,bar1执行RVO,而bar2执行NRVO。
首先是加上-fno-elide-constructors选项后的运行结果:
Constructor is called! this->_data: 11149328
Copy Constructor is called! src: 11149328 dst: 11149360
DeConstructor is called! this->_data: 11149328
DeConstructor is called! this->_data: 11149360
--------------------
Constructor is called! this->_data: 11149360
Constructor is called! this->_data: 11149328
Copy Constructor is called! src: 11149328 dst: 11149392
DeConstructor is called! this->_data: 11149328
DeConstructor is called! this->_data: 11149360
DeConstructor is called! this->_data: 11149392
--------------------
Constructor is called! this->_data: 11149392
Copy Constructor is called! src: 11149392 dst: 11149360
DeConstructor is called! this->_data: 11149392
Copy Constructor is called! src: 11149360 dst: 11149392
DeConstructor is called! this->_data: 11149360
--------------------
Constructor is called! this->_data: 11149360
Constructor is called! this->_data: 11149328
Copy Constructor is called! src: 11149328 dst: 11149424
DeConstructor is called! this->_data: 11149328
DeConstructor is called! this->_data: 11149360
Copy Constructor is called! src: 11149424 dst: 11149360
DeConstructor is called! this->_data: 11149424
--------------------
DeConstructor is called! this->_data: 11149360
DeConstructor is called! this->_data: 11149392
加上-fno-elide-constructors选项后,运行结果如下:
Constructor is called! this->_data: 9449488
DeConstructor is called! this->_data: 9449488
--------------------
Constructor is called! this->_data: 9449488
Constructor is called! this->_data: 9449520
Copy Constructor is called! src: 9449520 dst: 9449552
DeConstructor is called! this->_data: 9449520
DeConstructor is called! this->_data: 9449488
DeConstructor is called! this->_data: 9449552
--------------------
Constructor is called! this->_data: 9449552
--------------------
Constructor is called! this->_data: 9449488
Constructor is called! this->_data: 9449520
Copy Constructor is called! src: 9449520 dst: 9449584
DeConstructor is called! this->_data: 9449520
DeConstructor is called! this->_data: 9449488
--------------------
DeConstructor is called! this->_data: 9449584
DeConstructor is called! this->_data: 9449552
对比上面的结果,可见返回临时对象的bar1函数的调用进行了优化。而bar2函数的调用,不管有没有-fno-elide-constructors选项,单独调用bar2返回结果都是一样的,说明没有执行NRVO。对比”MyString str2 = bar2(1);”语句的执行结果,发现加上-fno-elide-constructors选项选项之后,仅仅少了一次复制构造函数的调用,这是因为虽然bar2没有执行NRVO,但是使用bar2返回的临时对象初始化str2时,编译器依然有copy elision的优化策略。
有关copy elision的解释如下:
In C++ computer programming, copy elision refers to a compiler optimization technique that eliminates unnecessary copying of objects.
The standard also describes a few situations where copying can be eliminated even if this would alter the program's behavior, the most common being the return value optimization. Another widely implemented optimization, described in the C++ standard, is when a temporary object of class type is copied to an object of the same type.
(https://en.wikipedia.org/wiki/Copy_elision)
When a nameless temporary, not bound to any references, would be copied or moved (since C++11) into an object of the same type (ignoring top-level cv-qualification), the copy/move (since C++11) is omitted. When that temporary is constructed, it is constructed directly in the storage where it would otherwise be copied or moved (since C++11) to. When the nameless temporary is the argument of a return statement, this variant of copy elision is known as RVO, "return value optimization".
(http://en.cppreference.com/w/cpp/language/copy_elision)
注:以上所有代码的编译环境是:操作系统CentOS Linux release 7.3.1611;GCC版本:gcc version 4.8.5 20150623 (Red Hat 4.8.5-11) (GCC)
参考:
http://blog.csdn.net/gatieme/article/details/22650353
http://www.cnblogs.com/liyiwen/archive/2009/12/02/1615711.html
C++返回值优化的更多相关文章
- 返回值优化(RVO)
C++的函数中,如果返回值是一个对象,那么理论上它不可避免的会调用对象的构造函数和析构函数,从而导致一定的效率损耗.如下函数所示: A test() { A a; return a; } 在test函 ...
- 【M20】协助完成“返回值优化(RVO)”
1.方法返回对象,会导致临时对象的产生,这降低了效率,const Rational operator* (const Rational& lhs,Rational& rhs).有没有什 ...
- [转] C++中临时对象及返回值优化
http://www.cnblogs.com/xkfz007/articles/2506022.html 什么是临时对象? C++真正的临时对象是不可见的匿名对象,不会出现在你的源码中,但是程序在运行 ...
- [More Effective C++]条款22有关返回值优化的验证结果
(这里的验证结果是针对返回值优化的,其实和条款22本身所说的,考虑以操作符复合形式(op=)取代其独身形式(op),关系不大.书生注) 在[More Effective C++]条款22的最后,在返回 ...
- C++返回值优化RVO
返回值优化,是一种属于编译器的技术,它通过转换源代码和对象的创建来加快源代码的执行速度.RVO = return value optimization. 测试平台:STM32F103VG + Keil ...
- 转:C++中临时对象及返回值优化
http://www.cnblogs.com/xkfz007/articles/2506022.html 什么是临时对象? C++真正的临时对象是不可见的匿名对象,不会出现在你的源码中,但是程序在运行 ...
- 一段小代码秒懂C++右值引用和RVO(返回值优化)的误区
关于C++右值引用的参考文档里面有明确提到,右值引用可以延长临时变量的周期.如: std::string&& r3 = s1 + s1; // okay: rvalue referen ...
- 返回值优化 RVO
<深度探索C++对象模型>-- 2.3 返回值的初始化 & 在编译器层面做优化
- C++标准库之string返回值研究
先说结论(不一定适用所有环境): 1) GCC默认开启了返回值优化(RVO),除非编译时指定“-fno-elide-constructors”: 2) 现代C++编译器一般都支持返回值优化: 3) s ...
随机推荐
- 洛谷P4022 熟悉的文章
题意:给定一个串集合s,每次给定一个串t,询问一个最大的L,使得存在一种划分能把t划分成若干个子串, 其中好的子串总长不小于0.9|t|.好的子串定义为长度不小于L且是s中某一个串的子串. 解:发现这 ...
- 使用setTimeout函数解决栈溢出问题
下面的代码,如果队列太长会导致栈溢出,怎样解决这个问题并且依然保持循环部分: var list = readHugeList(); var nextListItem = function() { va ...
- Mybatis insert返回主键ID
Mybatis insert语句书写 <insert id="insertSelective" useGeneratedKeys="true" keyPr ...
- android 数据库存取图片
Android数据库中存取图片通常使用两种方式,一种是保存图片所在路径,二是将图片以二进制的形式存储(sqlite3支持BLOB数据类型).对于两种方法的使用,好像第二种方法不如第一种方法更受程序员欢 ...
- Spring MVC 搭建web项目示例
环境为Eclipse 1:新建Dynamic web project : springMvcDemo 2:下载spring的jar包,把jar包复制到WEB-INF/lib目录下 3.添加配置文件w ...
- Nginx1.10.2安装配置
以下操作均在当前用户目录操作(root的目录,截止2016.11.2最新版本) 1.安装常用工具及基础包:yum -y install wget git vim make gcc gcc-c++ op ...
- solr源码解读(转)
solr源码解读(转)原文地址:http://blog.csdn.net/duck_genuine/article/details/6962624 配置 solr 对一个搜索请求的的流程 在solrc ...
- drf作业01
api\urls from django.conf.urls import url from . import views urlpatterns = [ url(r'^cars/$',views.C ...
- java图形验证码生成工具类及web页面校验验证码
最近做验证码,参考网上案例,发现有不少问题,特意进行了修改和完善. 验证码生成器: import javax.imageio.ImageIO; import java.awt.*; import ja ...
- ylbtech-自信:自信
ylbtech-自信:自信 自信心(confidence),在心理学中,与其最接近的是班杜拉(A.Bandura)在社会学习理论中提出的自我效能感 (self-efficacy)的概念,是指个体对自身 ...