Problem Description
There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).
 
Input
Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000).
 
Output
Print the word "yes" if 3 divide evenly into F(n).
Print the word "no" if not.
 
Sample Input
0
1
2
3
4
5
 
Sample Output
no no yes no no no
 
本题类似于HDU_1005:Number Sequence,算是其简化版。根据其思想,我们可以求F(n) = [F(n-1) + F(n-2)] mod 3。容易知道,数列的每项只能在0, 1, 2三个中间取值,因此组合数是9,由鸽巢原理,在10个组合情况中至少出现两对对应相等。换句话说,数列的循环周期至多是9。
可以手算出循环周期,当然亦可以写一个程序来算一下:
#include<stdio.h>
int main(void)
{
int f0 = , f1 = , j = ;
int a[]; for(int i = ; i < ; i++)
{
a[j] = (f0+f1)%;
f0 = f1;
f1 = a[j++];
} for(int i = ; i < ; i++)
printf("%d ", a[i]); return ;
}

输出结果:0 2 2 1 0 1 1 2 0 2。容易看出,循环周期为8,而从第一个数起每隔三个数0便出现一次。

因此,容易写出以下代码:

#include<stdio.h>
int main(void)
{
int n;
while(scanf("%d", &n) != EOF)
{
if((n-)% == )
printf("yes\n");
else
printf("no\n"); } return ;
}

当然,与HDU_1005不同的是,本题的数列的每项是确定的,因此可以打表通过:

#include<stdio.h>
#define MAXN 1000000
int a[MAXN+];
int main(void)
{
a[] = ;
a[] = ;
int n;
for(int i = ; i <= ; i++)
{
a[i] = (a[i-] + a[i-]) % ;
} while(scanf("%d", &n) != EOF)
{
if(a[n] == )
printf("yes\n");
else
printf("no\n");
} return ;
}

或许HDOJ系统测试强度不够吧,这题暴力破解都可以通过:

#include<stdio.h>
int main(void)
{
int f0 = , f1 = , j = , f2;
int a[];
int n;
while(scanf("%d", &n) != EOF)
{
f0 = ;
f1 = ;
for(int i = ; i <= n; i++)
{
f2 = (f0 + f1) % ;
f0 = f1;
f1 = f2;
} if(n == || n == )
printf("no\n");
else if(f2 == )
printf("yes\n");
else
printf("no\n");
} return ;
}

另外,打表的时候要注意,该题不mod3的话,也就是直接存入每项的具体值,然后直接取出求模的方式是不可取的,因为对于1, 1开头的斐波那契数列的第四十余项int类型已经存不下了(可以写个程序测试),这是因为斐波那契数列以接近0.618为底的指数增长。指数可是会爆炸的啊:~

HDU_1021:Fibonacci Again的更多相关文章

  1. 算法与数据结构(九) 查找表的顺序查找、折半查找、插值查找以及Fibonacci查找

    今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找 ...

  2. #26 fibonacci seqs

    Difficulty: Easy Topic: Fibonacci seqs Write a function which returns the first X fibonacci numbers. ...

  3. 关于java的递归写法,经典的Fibonacci数的问题

    经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...

  4. 斐波拉契数列(Fibonacci) 的python实现方式

    第一种:利用for循环 利用for循环时,不涉及到函数,但是这种方法对我种小小白来说比较好理解,一涉及到函数就比较抽象了... >>> fibs = [0,1] >>&g ...

  5. fibonacci数列(五种)

    自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1 ...

  6. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  7. Fibonacci 数列算法分析

    /************************************************* * Fibonacci 数列算法分析 ****************************** ...

  8. 算法系列:Fibonacci

    Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...

  9. UVa #11582 Colossal Fibonacci Numbers!

    巨大的斐波那契数 The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and  ...

随机推荐

  1. 高斯消元和高斯约旦消元 Gauss(-Jordan) Elimination

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵. 在讲算法前先介绍些概念 矩阵的初等变换 矩阵的初等变换又分为矩阵的初等行变换和矩阵的初等列变换 ...

  2. getBoundingClientRect介绍

    getBoundingClientRect用于获取元素相对与浏览器视口的位置 由于getBoundingClientRect()已经是w3c标准,所以不用担心兼容,不过在ie下还是有所区别 { top ...

  3. Javascript-new Date() 与 Date() 的区别

    var today1 = Date() //返回一个字符串(string),没有getDate等日期对象方法,内容为当前时间 var today2 = new Date() //返回一日期对象,内容为 ...

  4. Idea代理设置与Java程序的代理设置

    最近在学习WebService的过程中,为了弄清楚发送和接收的包的数据结构,使用Fiddler抓取包的数据.开始先配置了Idea的代理设置,但执行Java代码发送请求时,依然无法在Fiddler中抓取 ...

  5. webpack4进阶配置

    移动端CSS px自动转换成rem 需要两步来实现: px2rem-loader 在构建阶段将px转换成rem lib-flexible 页面渲染时动态计算根元素的font-size值(手机淘宝开源库 ...

  6. 模板与泛型编程 c++ primer ch16.1

    在摸板定义中,模板参数列表不能为空, 编译器用推断出的参数来进行 实例化(instantiation) 一般来说 模板是有type parameter 但是也可以声明 nontype paramete ...

  7. java-File类-字节流

    一 File 1.1 递归子目录 获取所有子目录中的内容 import java.io.File; public class GetAllFiles { /** * @param args */ pu ...

  8. Redhat/Fedora 或类似系统, 配置网络的工具介绍

    在Redhat早期的版本中, 有linuxconf .redhat-config-network .netconfig 等工具: 在Redhat/Fedora 最新的版本有 system-config ...

  9. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  10. 转:VMware中CentOS配置静态IP进行网络访问(NAT方式和桥接模式)

    传送门:http://blog.csdn.net/zhangatle/article/details/77417310 其实这个博主的博客最是适合新手学习,踩过的坑让我再踩一踩,印象深刻 首先进行NA ...