# BZOJ5300 [CQOI2018]九连环 题解 | 高精度 FFT
今天做了传说中的CQOI六道板子题……有了一种自己很巨的错觉(雾
题面
求n连环的最少步数,n <= 1e5。
题解
首先……我不会玩九连环……
通过找规律(其实是百度搜索)可知,\(n\)连环的最少步数是\(\lfloor\frac{2^{n + 1}}{3}\rfloor\)。
(实际上,九连环的步骤恰好是一个叫【格雷码】的编码方式中的\(1\)一直到\(2^{n+1}-1\)!)
然后我们要输出这个\(\lfloor\frac{2^{n + 1}}{3}\rfloor\)就好了。
然后我们发现——毒瘤出题人让我们写高精度。
……那就只能写咯……
用FFT做高精度乘法,封装起来,然后正常进行快速幂即可。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#define enter putchar('\n')
#define space putchar(' ')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op == 1) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 150000;
const double PI = acos(-1);
int T, x;
struct cp {
double a, b;
cp(){}
cp(double x, double y): a(x), b(y){}
cp operator + (const cp &obj) const {
return cp(a + obj.a, b + obj.b);
}
cp operator - (const cp &obj) const {
return cp(a - obj.a, b - obj.b);
}
cp operator * (const cp &obj) const {
return cp(a * obj.a - b * obj.b, a * obj.b + b * obj.a);
}
} inv[N], omg[N];
void init(int n){
for(int i = 0; i < n; i++){
omg[i] = cp(cos(2 * PI / n * i), sin(2 * PI / n * i));
inv[i] = cp(omg[i].a, -omg[i].b);
}
}
void fft(cp *a, int n, cp *omg){
int lim = 0;
while((1 << lim) < n) lim++;
for(int i = 0; i < n; i++){
int t = 0;
for(int j = 0; j < lim; j++)
if(i >> j & 1) t |= 1 << (lim - j - 1);
if(i < t) swap(a[i], a[t]);
}
for(int l = 2; l <= n; l <<= 1){
int m = l / 2;
for(cp *p = a; p != a + n; p += l)
for(int i = 0; i < m; i++){
cp t = omg[n / l * i] * p[i + m];
p[i + m] = p[i] - t;
p[i] = p[i] + t;
}
}
}
struct big {
int g[N], len;
big(){
memset(g, 0, sizeof(g));
len = 1;
}
big(int x){
memset(g, 0, sizeof(g));
len = 0;
if(!x){
len = 1;
return;
}
while(x) g[len++] = x % 10, x /= 10;
}
void out(){
for(int i = len - 1; i >= 0; i--)
printf("%d", g[i]);
enter;
}
void operator /= (int x){
int sum = 0, newlen = 0;
for(int i = len - 1; i >= 0; i--){
sum = sum * 10 + g[i];
if(sum < x) g[i] = 0;
else{
if(!newlen) newlen = i + 1;
g[i] = sum / x;
sum %= x;
}
}
len = max(newlen, 1);
}
void operator *= (const big &b){
static cp A[N], B[N];
int newlen = len + b.len - 1, n = 1;
while(n < newlen) n <<= 1;
for(int i = 0; i < n; i++){
A[i] = cp(i < len ? g[i] : 0, 0);
B[i] = cp(i < b.len ? b.g[i] : 0, 0);
}
init(n);
fft(A, n, omg);
fft(B, n, omg);
for(int i = 0; i < n; i++)
A[i] = A[i] * B[i];
fft(A, n, inv);
for(int i = 0; i < newlen; i++)
g[i] = (int)floor(A[i].a / n + 0.5);
g[len = newlen] = 0;
for(int i = 0; i < len; i++)
g[i + 1] += g[i] / 10, g[i] %= 10;
if(g[len]) len++;
}
} ret, a;
int main(){
read(T);
while(T--){
read(x), x++;
ret = big(1), a = big(2);
while(x){
if(x & 1) ret *= a;
a *= a;
x >>= 1;
}
ret /= 3;
ret.out();
}
return 0;
}
# BZOJ5300 [CQOI2018]九连环 题解 | 高精度 FFT的更多相关文章
- 【BZOJ5300】[CQOI2018]九连环 (高精度,FFT)
[BZOJ5300][CQOI2018]九连环 (高精度,FFT) 题面 BZOJ 洛谷 题解 去这里看吧,多么好 #include<iostream> #include<cstdi ...
- BZOJ5300:[CQOI2018]九连环——题解
一种打表的方法,适用于知道如何解九连环的人. 我们知道,解九(n)连环必须先解第九(n)环,然后解八(n-1).七(n-2)-- 根据这个我们飞快的写出了一个递推式,设\(f[i]\)为\(i\)连环 ...
- BZOJ5300 [Cqoi2018]九连环 【数学】【FFT】
题目分析: 这道题是数学必修五的原题,做法如下图,书上讲得很详细了. 那么这道题目用快速幂就可以解决了,值得注意的是,分析时间复杂度会发现直接做乘法其实是O(n^2)的,但是有一个1/20左右的常数, ...
- 2019.01.02 bzoj5300: [Cqoi2018]九连环(fft优化高精+快速幂)
传送门 题意不好描述(自己看样例解释) 首先可以推出一个递推式:fn=fn−1+2fn−2+1f_n=f_{n-1}+2f_{n-2}+1fn=fn−1+2fn−2+1 然后可以构造两个等式: ...
- BZOJ5300 [Cqoi2018]九连环 【dp + 高精】
题目链接 BZOJ5300 题解 这题真的是很丧病,,卡高精卡到哭 我们设\(f[i]\)表示卸掉前\(i\)个环需要的步数 那么 \[f[i] = 2*f[i - 2] + f[i - 1] + 1 ...
- CQOI2018 九连环 打表找规律 fft快速傅里叶变换
题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...
- CQOI2018简要题解
CQOI2018简要题解 D1T1 破解 D-H 协议 题意 Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信 ...
- 高精度&&FFT
ACM-高精度模板(综合篇) 时间:-- :: 阅读: 评论: 收藏: [点我收藏+] 标签:高精度 在这里,我们约定,能用int表示的数据视为单精度,否则为高精度.所有函数的设计均采用带返回值的形式 ...
- CQOI2018 简要题解
破解D-H协议 列个式子会发现是BSGSBSGSBSGS的模板题,直接码就是了. 代码: #include<bits/stdc++.h> #include<tr1/unordered ...
随机推荐
- (转)Linux的用户和用户组管理
原文 Linux是个多用户多任务的分时操作系统,所有一个要使用系统资源的用户都必须先向系统管理员申请一个账号,然后以这个账号的身份进入系统.用户的账号一方面能帮助系统管理员对使用系统的用户进行跟踪,并 ...
- svg画弧
http://www.pindari.com/svg-arc.html https://jsfiddle.net/8robssa0/ http://jsbin.com/giyotacuxu/edit? ...
- NoSql的三大基石:CAP理论&BASE&最终一致性
关系型数据库的局限 NoSql出现在关系型数据库之后,主要是为了解决关系型数据库的短板,我们先来看看随着软件行业的发展,关系型数据库面临了哪些挑战: 1.高并发 一个最典型的就是电商网站,例如双11, ...
- SAAS云平台搭建札记: (二) Linux Ubutu下.Net Core整套运行环境的搭建
最近做的项目,由于预算有限,公司决定不采购Windows服务器,而采购基于Linux的服务器. 一般的VPS服务器,如果使用Windows系统,那么Windows Server2012\2016安装好 ...
- 校内模拟赛 虫洞(by NiroBC)
题意: n个点m条边的有向图,每一天每条边存在的概率都是p,在最优策略下,询问从1到n的期望天数. 分析: dijkstra. 每次一定会优先选dp最小的后继走,如果这条边不存在,选次小的,以此类推. ...
- P5204 [USACO19JAN]Train Tracking 2
P5204 [USACO19JAN]Train Tracking 2 毒毒题,对着嘤文题解看了贼久 首先考虑此题的一个弱化版本:如果输入的所有\(c_i\)相等怎么做 现在假设有\(len\)个数,取 ...
- springboot+thymeleaf刨坑——首页加载js/css等失败解决方法
在使用thymeleaf加载css或js样式,当我们进入登录页的时候发现,所有的样式都是加载失败的.原因是在新版中有这样一个坑……: 当我们设置了addInterceptors-注册拦截器的时候,通常 ...
- OpenGL学习(1)——创建窗口
这是我的第一篇博客,试着记录学习OpenGL的过程.使用的教程:LearnOpenGL,系统:Deepin 15.9.3,IDE:Qt Creator. 添加头文件 创建窗口用到两个库:GLFW和GL ...
- Linux内核分析作业第五周
系统调用的三个层次(下) 一.给MenuOS增加time和time-asm命令 1.克隆并自动编译 MenuOS rm menu -rf 强制删除原menu文件 git clone https://g ...
- Python学习笔记 ---第三章
函数 函数是代码的一种抽象 函数 说明 abs 绝对值 max 最大值 hex 转换为16进制 强制数据类型转换 int('123') 123 int(12.35) 12 srt(100) '100' ...