设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+c^2}}\le\dfrac{3}{2}$


证明:设$a=\dfrac{1}{x},b=\dfrac{1}{y},c=\dfrac{1}{z}$由$a+b+c\le abc$知$xy+yz+zx\le 1$
\begin{align}\label{}
\sum\dfrac{1}{\sqrt{1+a^2}}&=\sum\dfrac{x}{\sqrt{1+x^2}} \\
&\le\sum\dfrac{x}{\sqrt{x^2+xy+yz+zx}}\\
&=\sum\dfrac{x}{\sqrt{(x+y)(x+z)}}\\
&=\sum\dfrac{x\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}\\
&\le\sum\dfrac{x(x+y+x+z)}{2(x+y)(x+z)}\\
&=\sum\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\\
&=\dfrac{3}{2}\\
\end{align}.

注:

如果条件改为$a+b+c=abc,a>0,b>0,c>0$则容易想到$x=tanA,y=tanB,z=tanC$的代换.

其中$A,B,C$为锐角三角形的三个角.

另一个常见的代换$p,q,r\ge0,p^2+q^2+r^2+2pqr=1$时,

可令$p=cosA,q=cosB,r=cosC,A,B,C\in[0,\dfrac{\pi}{2}],A+B+C=\pi$

MT【230】一道代数不等式的更多相关文章

  1. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  2. 【2018暑假集训模拟一】Day1题解

    T1准确率 [题目描述] 你是一个骁勇善战.日刷百题的OIer. 今天你已经在你OJ 上提交了y 次,其中x次是正确的,这时,你的准确率是x/y.然而,你最喜欢一个在[0; 1] 中的有理数p/q(是 ...

  3. 2018天梯赛、蓝桥杯、(CCPC省赛、邀请赛、ICPC邀请赛)校内选拔赛反思总结!

    才四月份,上半年的比赛就告一段落了.. 天梯赛混子,三十个人分最低,把队友拖到了国三,蓝桥杯省二滚粗,止步京城,旅游选拔赛成功选为替补二队,啊! 不过既然已经过去,我们说些乐观的一面,积累了大赛经验是 ...

  4. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  5. MT【200】一道自招的不等式

    (2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$ ...

  6. MT【274】一道漂亮的不等式题

    已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个 ...

  7. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  8. MT【271】一道三角最值问题

    若不等式$k\sin^2B+\sin A\sin C>19\sin B\sin C$对任意$\Delta ABC$都成立,则$k$的最小值为_____ 分析:由正弦定理得$k>\dfrac ...

  9. MT【48】分式连加形式下求不等式解集的区间长度

    ] 评:此题有分析的味道在里面,用到了n次多项式的韦达定理,用到了零点存在定理以及代数基本定理:n次多项式在复数域上有n个根.

随机推荐

  1. python---pandas.merge使用

    merge 函数参数 ”’ merge: 合并数据集, 通过left, right确定连接字段,默认是两个数据集相同的字段 参数 说明 left 参与合并的左侧DataFrame right 参与合并 ...

  2. BZOJ4860 BJOI2017 树的难题 点分治、线段树合并

    传送门 只会线段树……关于单调队列的解法可以去看“重建计划”一题. 看到路径长度$\in [L,R]$考虑点分治.可以知道,在当前分治中心向其他点的路径中,始边(也就是分治中心到对应子树的根的那一条边 ...

  3. vue-用Vue-cli从零开始搭建一个Vue项目

    Vue是近两年来比较火的一个前端框架(渐进式框架吧). Vue两大核心思想:组件化和数据驱动.组件化就是将一个整体合理拆分为一个一个小块(组件),组件可重复使用:数据驱动是前端的未来发展方向,释放了对 ...

  4. fastjson tojson部分规则

    fastjson 作为java 目前最快速,最轻便  json对象,与json 字符串转换 第三方包,阿里巴巴提供. 对象转json规则 转json字符串 列 JSONObject.toJSON(ne ...

  5. ES7 之 Async/await 的使用

    在 js 异步请求数据时,通常,我们多采用回调函数的方式解决,但是,如果有多个回调函数嵌套时,代码显得很不优雅,维护成本也相应较高. ES6 提供的 Promise 方法和 ES7 提供的 Async ...

  6. C#实现.Net对邮件进行DKIM签名和验证,支持附件,发送邮件签名后直接投递到对方服务器(无需己方邮件服务器)

    项目地址 https://github.com/xiangyuecn/DKIM-Smtp-csharp 主要支持 对邮件进行DKIM签名,支持带附件 对整个邮件内容(.eml文件)的DKIM签名进行验 ...

  7. LVS负载均衡-基础知识梳理

    一. 集群的概念 服务器集群简称集群是一种服务器系统,它通过一组松散集成的服务器软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台服务器.集群系统中的单个服务器通常称 ...

  8. Spring RPC 入门学习(3)-插入Student对象

    Spring RPC 向后台传递对象 1. 新建RPC接口:StudentInterface.java package com.cvicse.ump.rpc.interfaceDefine; impo ...

  9. 《Linux内核分析》读书笔记(四章)

    <Linux内核分析>读书笔记(四章) 标签(空格分隔): 20135328陈都 第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行 ...

  10. 《linux内核设计与实现》读书笔记——第三章