http://www.lydsy.com/JudgeOnline/problem.php?id=1797 (题目链接)

题意

  求一条边是否可能在一个最小割集中,以及这条边是否一定在最小割集中。

Solution

  DaD3zZ大爷

  跑完最大流以后,在残余网络上跑tarjan求出所有SCC,记belong[u]为点u所在SCC的编号。显然有belong[s]!=belong[t](否则s到t有通路,能继续增广)。
  ①对于任意一条满流边(u,v),(u,v)能够出现在某个最小割集中,当且仅当belong[u]!=belong[v];
  ②对于任意一条满流边(u,v),(u,v)必定出现在最小割集中,当且仅当belong[u]==belong[s]且belong[v]==belong[t]。

细节

  我也不知道为什么犯了若干sb错误= =

代码

// bzoj1797
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<60)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=1000010;
int head[maxn],bel[maxn],low[maxn],dfn[maxn],st[maxn],id[maxn],n,m,S,T,top,scc,cnt=1;
struct edge {int from,to,next,w;}e[maxn]; namespace Dinic {
int d[maxn];
bool bfs() {
memset(d,-1,sizeof(d));
queue<int> q;q.push(S);d[S]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next)
if (e[i].w && d[e[i].to]<0) d[e[i].to]=d[x]+1,q.push(e[i].to);
}
return d[T]>0;
}
int dfs(int x,LL f) {
if (x==T || f==0) return f;
int w,used=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(1LL*e[i].w,f-used));
used+=w,e[i].w-=w,e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void main() {
while (bfs()) dfs(S,inf);
}
} void link(int u,int v,int w) {
e[++cnt]=(edge){u,v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){v,u,head[v],0};head[v]=cnt;
}
void Tarjan(int x) {
low[x]=dfn[x]=++cnt;
st[++top]=x;
for (int i=head[x];i;i=e[i].next) if (e[i].w) {
if (!dfn[e[i].to]) {
Tarjan(e[i].to);
low[x]=min(low[x],low[e[i].to]);
}
else if (!bel[e[i].to]) low[x]=min(low[x],dfn[e[i].to]);
}
if (dfn[x]==low[x]) {
scc++;
for (;st[top]!=x;top--) bel[st[top]]=scc;
bel[st[top--]]=scc;
}
}
int main() {
scanf("%d%d%d%d",&n,&m,&S,&T);
for (int u,v,w,i=1;i<=m;i++) {
scanf("%d%d%d",&u,&v,&w);
id[i]=cnt+1;
link(u,v,w);
}
Dinic::main();cnt=0;
for (int i=1;i<=n;i++) if (!dfn[i]) Tarjan(i);
for (int i=1;i<=m;i++) {
int j=id[i];
if (e[j].w!=0 || bel[e[j].from]==bel[e[j].to]) {puts("0 0");continue;}
if (bel[e[j].from]==bel[S] && bel[e[j].to]==bel[T]) puts("1 1");
else puts("1 0");
}
return 0;
}

【bzoj1797】 Ahoi2009—Mincut 最小割的更多相关文章

  1. bzoj1797: [Ahoi2009]Mincut 最小割

    最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...

  2. bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)

    1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...

  3. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

  4. bzoj1797: [Ahoi2009]Mincut 最小割(网络流,缩点)

    传送门 首先肯定要跑一个最小割也就是最大流 然后我们把残量网络tarjan,用所有没有满流的边来缩点 一条边如果没有满流,那它就不可能被割了 一条边如果所属的两个强联通分量不同,它就可以被割 一条边如 ...

  5. 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割

    结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...

  6. BZOJ 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2076  Solved: 885[Submit] ...

  7. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  8. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  9. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

  10. 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 链接 分析: 题意为:问一条边是否可能存在于最小割中,是否一定存在于最小割中. 首先最小割的边一定是满流的边.且这条边点两个端点u.v中,至少一个 ...

随机推荐

  1. 【php增删改查实例】第十一节 - 部门管理模块(编辑功能)

    9. 编辑部门功能的实现 思路:只允许用户勾选一条数据,点击编辑按钮,会跳出一个和新增数据类似的对话框.然后,用户可以修改部门名称和部门编码.点击保存按钮,提示修改成功. 9.1 前台代码编写 < ...

  2. Bluedroid 函数分析:bta_dm_gattc_register

    我们先来看看在bluedroid 里面有多少地方调用到这里: 可以看出除了 它自己声明的地方,有三处 调用到这个函数. 一处是 进行discovery,一处是进行search的时候,还有一次是bta_ ...

  3. dp方法论——由矩阵相乘问题学习dp解题思路

    前篇戳:dp入门——由分杆问题认识动态规划 导语 刷过一些算法题,就会十分珍惜“方法论”这种东西.Leetcode上只有题目.讨论和答案,没有方法论.往往答案看起来十分切中要害,但是从看题目到得到思路 ...

  4. Object-Oriented(一)创建对象

    自用备忘笔记 前言 虽然可以使用 Object 和对象字面量创建对象,但是如果要创建大量相似的对象又显得麻烦.为解决这个问题,人们开始使用工厂模式的变种. 工厂模式 function person(n ...

  5. 暴雪《争霸艾泽拉斯》*采用自适应 SSAO

    在实时渲染过程中,屏幕空间环境光遮蔽 (SSAO) 常用于打造小范围环境光效果和接触阴影效果.它用于许多现代游戏,通常占用 5% 到 10% 的帧时间.在<争霸艾泽拉斯>* 游戏开发过程中 ...

  6. Pair Project —— Elevator Scheduler

    结对编程人员 12061153 刘丽萍 12061154 冯飘飘 说明结对编程的优点和缺点. 结对编程的优点: 以前都是自己一个人编程,对于相互结对或者团队编程都没有接触过.而自己在写代码时不可避免的 ...

  7. 美食应用 吃了么 beta 测试报告

    为了更好的测试我们应用的兼容性和性能,我们借助了网上的平台Testin云测和百度MTC平台来测试我们的应用,一下是我们的测试结果. 一.兼容性测试 我们对119台终端机器进行了测试,通过测试的有99台 ...

  8. 使用git命令创建分支到团队项目

    背景 在我们的团队中,我作为管理者,创建了一个叫HelloWorld的项目,大家各自在本地进行开发,将自己的工作贡献到我们的团队项目中.为了便于审核,我希望大家先将自己的贡献先放在属于自己的一个分支上 ...

  9. 剑指offer:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...

  10. Activiti reassign task to another user

    //早先胡乱尝试的其他方法,可能对于以后深入学习Activiti有些用处. //taskService.delegateTask(taskId, receiveUserId); //taskServi ...