NetCore并发编程

示例代码:https://github.com/lotapp/BaseCode/tree/master/netcore/4_Concurrency

先简单说下概念(其实之前也有说,所以简说下):

  1. 并发:同时做多件事情
  2. 多线程:并发的一种形式
  3. 并行处理:多线程的一种(线程池产生的一种并发类型,eg:异步编程
  4. 响应式编程:一种编程模式,对事件进行响应(有点类似于JQ的事件)

Net里面很少用进程,在以前基本上都是线程+池+异步+并行+协程

我这边简单引入一下,毕竟主要是写Python的教程,Net只是帮你们回顾一下,如果你发现还没听过这些概念,或者你的项目中还充斥着各种ThreadThreadPool的话,真的得系统的学习一下了,现在官网的文档已经很完善了,记得早几年啥都没有,也只能挖那些外国开源项目:

https://docs.microsoft.com/zh-cn/dotnet/standard/parallel-processing-and-concurrency

1.异步编程(Task)

Task的目的其实就是为了简化ThreadThreadPool的代码,下面一起看看吧:

异步用起来比较简单,一般IO,DB,Net用的比较多,很多时候都会采用重试机制,举个简单的例子:

/// <summary>
/// 模拟一个网络操作(别忘了重试机制)
/// </summary>
/// <param name="url">url</param>
/// <returns></returns>
private async static Task<string> DownloadStringAsync(string url)
{
using (var client = new HttpClient())
{
// 设置第一次重试时间
var nextDelay = TimeSpan.FromSeconds(1);
for (int i = 0; i < 3; i++)
{
try
{
return await client.GetStringAsync(url);
}
catch { }
await Task.Delay(nextDelay); // 用异步阻塞的方式防止服务器被太多重试给阻塞了
nextDelay *= 2; // 3次重试机会,第一次1s,第二次2s,第三次4s
}
// 最后一次尝试,错误就抛出
return await client.GetStringAsync(url);
}
}

然后补充说下Task异常的问题,当你await的时候如果有异常会抛出,在第一个await处捕获处理即可

如果asyncawait就是理解不了的可以这样想:async就是为了让await生效(为了向后兼容)

对了,如果返回的是void,你设置成Task就行了,触发是类似于事件之类的方法才使用void,不然没有返回值都是使用Task

项目里经常有这么一个场景:等待一组任务完成后再执行某个操作,看个引入案例:

/// <summary>
/// 1.批量任务
/// </summary>
/// <param name="list"></param>
/// <returns></returns>
private async static Task<string[]> DownloadStringAsync(IEnumerable<string> list)
{
using (var client = new HttpClient())
{
var tasks = list.Select(url => client.GetStringAsync(url)).ToArray();
return await Task.WhenAll(tasks);
}
}

再举一个场景:同时调用多个同效果的API,有一个返回就好了,其他的忽略

/// <summary>
/// 2.返回首先完成的Task
/// </summary>
/// <param name="list"></param>
/// <returns></returns>
private static async Task<string> GetIPAsync(IEnumerable<string> list)
{
using (var client = new HttpClient())
{
var tasks = list.Select(url => client.GetStringAsync(url)).ToArray();
var task = await Task.WhenAny(tasks); // 返回第一个完成的Task
return await task;
}
}

一个async方法被await调用后,当它恢复运行时就会回到原来的上下文中运行。

如果你的Task不再需要上下文了可以使用:task.ConfigureAwait(false),eg:写个日记还要啥上下文?

逆天的建议是:在核心代码里面一种使用ConfigureAwait,用户页面相关代码,不需要上下文的加上

其实如果有太多await在上下文里恢复那也是比较卡的,使用ConfigureAwait之后,被暂停后会在线程池里面继续运行

再看一个场景:比如一个耗时操作,我需要指定它的超时时间:

 /// <summary>
/// 3.超时取消
/// </summary>
/// <returns></returns>
private static async Task<string> CancellMethod()
{
//实例化取消任务
var cts = new CancellationTokenSource();
cts.CancelAfter(TimeSpan.FromSeconds(3)); // 设置失效时间为3s
try
{
return await DoSomethingAsync(cts.Token);
}
// 任务已经取消会引发TaskCanceledException
catch (TaskCanceledException ex)
{ return "false";
}
}
/// <summary>
/// 模仿一个耗时操作
/// </summary>
/// <returns></returns>
private static async Task<string> DoSomethingAsync(CancellationToken token)
{
await Task.Delay(TimeSpan.FromSeconds(5), token);
return "ok";
}

异步这块简单回顾就不说了,留两个扩展,你们自行探讨:

  1. 进度方面的可以使用IProgress<T>,就当留个作业自己摸索下吧~
  2. 使用了异步之后尽量避免使用task.Wait or task.Result,这样可以避免死锁

Task其他新特征去官网看看吧,引入到此为止了。


2.并行编程(Parallel)

这个其实出来很久了,现在基本上都是用PLinq比较多点,主要就是:

  1. 数据并行:重点在处理数据(eg:聚合)
  2. 任务并行:重点在执行任务(每个任务块尽可能独立,越独立效率越高)

数据并行

以前都是Parallel.ForEach这么用,现在和Linq结合之后非常方便.AsParallel()就OK了

说很抽象看个简单案例:

static void Main(string[] args)
{
IEnumerable<int> list = new List<int>() { 1, 2, 3, 4, 5, 7, 8, 9 };
foreach (var item in ParallelMethod(list))
{
Console.WriteLine(item);
}
}
/// <summary>
/// 举个例子
/// </summary>
private static IEnumerable<int> ParallelMethod(IEnumerable<int> list)
{
return list.AsParallel().Select(x => x * x);
}

正常执行的结果应该是:

1
4
9
25
64
16
49
81

并行之后就是这样了(不管顺序了):

25
64
1
9
49
81
4
16

当然了,如果你就是对顺序有要求可以使用:.AsOrdered()

/// <summary>
/// 举个例子
/// </summary>
private static IEnumerable<int> ParallelMethod(IEnumerable<int> list)
{
return list.AsParallel().AsOrdered().Select(x => x * x);
}

其实实际项目中,使用并行的时候:任务时间适中,太长不适合,太短也不适合

记得大家在项目里经常会用到如SumCount等聚合函数,其实这时候使用并行就很合适

var list = new List<long>();
for (long i = 0; i < 1000000; i++)
{
list.Add(i);
}
Console.WriteLine(GetSumParallel(list));
private static long GetSumParallel(IEnumerable<long> list)
{
return list.AsParallel().Sum();
}

time dotnet PLINQ.dll

499999500000

real	0m0.096s
user 0m0.081s
sys 0m0.025s

不使用并行:(稍微多了点,CPU越密集差距越大)

499999500000

real	0m0.103s
user 0m0.092s
sys 0m0.021s

其实聚合有一个通用方法,可以支持复杂的聚合:(以上面sum为例)

.Aggregate(
seed:0,
func:(sum,item)=>sum+item
);

稍微扩展一下,PLinq也是支持取消的,.WithCancellation(CancellationToken)

Token的用法和上面一样,就不复述了,如果需要和异步结合,一个Task.Run就可以把并行任务交给线程池了

也可以使用Task的异步方法,设置超时时间,这样PLinq超时了也就终止了

PLinq这么方便,其实也是有一些小弊端的,比如它会直接最大程度的占用系统资源,可能会影响其他的任务,而传统的Parallel则会动态调整


任务并行(并行调用)

这个PLinq好像没有对应的方法,有新语法你可以说下,来举个例子:

await Task.Run(() =>
Parallel.Invoke(
() => Task.Delay(TimeSpan.FromSeconds(3)),
() => Task.Delay(TimeSpan.FromSeconds(2))
));

取消也支持:

Parallel.Invoke(new ParallelOptions() { CancellationToken = token }, actions);

扩充说明

其实还有一些比如数据流响应编程没说,这个之前都是用第三方库,刚才看官网文档,好像已经支持了,所以就不卖弄了,感兴趣的可以去看看,其实项目里面有流数据相关的框架,eg:Spark,都是比较成熟的解决方案了基本上也不太使用这些了。

然后还有一些没说,比如NetCore里面不可变类型(列表、字典、集合、队列、栈、线程安全字典等等)以及限流任务调度等,这些关键词我提一下,也方便你去搜索自己学习拓展

先到这吧,其他的自己探索一下吧,最后贴一些Nuget库,你可以针对性的使用:

数据流Microsoft.Tpl.Dataflow

响应编程(Linq的Rx操作):Rx-Main

不可变类型Microsoft.Bcl.Immutable

Python3 与 C# 并发编程之~ Net篇的更多相关文章

  1. Python3 与 C# 并发编程之~ 协程篇

      3.协程篇¶ 去年微信公众号就陆陆续续发布了,我一直以为博客也汇总同步了,这几天有朋友说一直没找到,遂发现,的确是漏了,所以补上一篇 在线预览:https://github.lesschina.c ...

  2. Python3 与 C# 并发编程之~进程先导篇

      在线预览:http://github.lesschina.com/python/base/concurrency/1.并发编程-进程先导篇.html Python3 与 C# 并发编程之- 进程篇 ...

  3. [ 高并发]Java高并发编程系列第二篇--线程同步

    高并发,听起来高大上的一个词汇,在身处于互联网潮的社会大趋势下,高并发赋予了更多的传奇色彩.首先,我们可以看到很多招聘中,会提到有高并发项目者优先.高并发,意味着,你的前雇主,有很大的业务层面的需求, ...

  4. Python3 与 C# 并发编程之~ 进程篇

      上次说了很多Linux下进程相关知识,这边不再复述,下面来说说Python的并发编程,如有错误欢迎提出- 如果遇到听不懂的可以看上一次的文章:https://www.cnblogs.com/dot ...

  5. Python3 与 C# 并发编程之~ 线程篇

      2.线程篇¶ 在线预览:https://github.lesschina.com/python/base/concurrency/3.并发编程-线程篇.html 示例代码:https://gith ...

  6. Python 并发编程:PoolExecutor 篇

    个人笔记,如有疏漏,还请指正. 使用多线程(threading)和多进程(multiprocessing)完成常规的并发需求,在启动的时候 start.join 等步骤不能省,复杂的需要还要用 1-2 ...

  7. java并发编程系列原理篇--JDK中的通信工具类Semaphore

    前言 java多线程之间进行通信时,JDK主要提供了以下几种通信工具类.主要有Semaphore.CountDownLatch.CyclicBarrier.exchanger.Phaser这几个通讯类 ...

  8. java并发编程JUC第九篇:CountDownLatch线程同步

    在之前的文章中已经为大家介绍了java并发编程的工具:BlockingQueue接口.ArrayBlockingQueue.DelayQueue.LinkedBlockingQueue.Priorit ...

  9. Python并发编程的几篇文章

    Python几种并发实现方案的性能比较 http://www.elias.cn/Python/PyConcurrency?from=Develop.PyConcurrency python并发编程 h ...

随机推荐

  1. Codeforces Gym100543L Outer space invaders 区间dp 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543L.html 题目传送门 - CF-Gym100543L 题意 $T$ 组数据. 有 $n ...

  2. Vijos1983 NOIP2015Day2T3 运输计划 transport LCA

    题目链接Vijos 题目链接UOJ 该博客在博客园的链接 转载一个大佬的题解: 点击这里->大佬题解 下面谈谈我的感悟: 当然写代码也是写的很艰辛: 我力劝C++的同胞们,这题卡常数,Dfs党会 ...

  3. P1156 垃圾陷阱 DP

    题目描述 卡门――农夫约翰极其珍视的一条Holsteins奶牛――已经落了到“垃圾井”中.“垃圾井”是农夫们扔垃圾的地方,它的深度为D(2 \le D \le 100)D(2≤D≤100)英尺. 卡门 ...

  4. 001 大数据情况下linux的配置

    一:配置的大纲 主要的配置有几个方面: 主机名 IP 网络映射 增加新用户 给新用户root的权限,方便实验 关闭防火墙 安全子系统需要关闭 二:主机名的配置 命令:vi /etc/sysconfig ...

  5. Chrome 浏览器数据无法同步,google账号登录失败,提示 Request canceled

    解决方法: 进账号设置不同步 钱包数据 (即取消"Google Pay 中存储的付款方式和地址信息"项的同步) 参考链接: https://www.v2ex.com/t/45285 ...

  6. day52 js--- bom dom

    本文转载自李文周博客,-----cnblog.liwenzhou.com dom官网资料: http://www.w3school.com.cn/htmldom/dom_methods.asp Jav ...

  7. C语言中的模运算-hdu6124(打表,找规律)

    题目链接:https://vjudge.net/problem/HDU-6124 题目描述: 题目大意就是给你一个数,判断这个数 % 其它数后共有几种结果. 这题对我来说最大的难点是我不太知道每个数 ...

  8. P3258 [JLOI2014]松鼠的新家

    P3258 [JLOI2014]松鼠的新家倍增lca+树上差分,从叶子节点向根节点求前缀和,dfs求子树和即可,最后,把每次的起点和终点都. #include<iostream> #inc ...

  9. 持续集成时 travis 和 codecov 等 yaml 文件的配置

    最近在项目中在配置CodeCov 以及Travis 和 AppVeyor做持续集成时,遇到了一些问题,也解决了一些问题.顺便拿来分享一下. 首先时Travis,这个主要是来跑基于 Linux 环境下的 ...

  10. ASP.NET Core 新建线程中使用依赖注入的问题

    问题来自博问的一个提问 .net core 多线程数据保存的时候DbContext被释放 . TCPService 通过构造函数注入了 ContentService , ContentService ...