GMA Round 1 向量计算
向量计算
已知$\left |\overrightarrow{AB} \right |^2+\left |\overrightarrow{CD} \right |^2+\left |\overrightarrow{EF} \right |^2+\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{CD}\cdot \overrightarrow{EF}+\overrightarrow{EF}\cdot \overrightarrow{AB}=18$
求$\left | \overrightarrow{AB}+\overrightarrow{CD} \right |^2+ \left | \overrightarrow{CD}+\overrightarrow{EF} \right |^2+ \left | \overrightarrow{EF}+\overrightarrow{AB} \right |^2$
$\left | \overrightarrow{AB}+\overrightarrow{CD} \right |^2+ \left | \overrightarrow{CD}+\overrightarrow{EF} \right |^2+ \left | \overrightarrow{EF}+\overrightarrow{AB} \right |^2$
$=\left |\overrightarrow{AB} \right |^2+\left |\overrightarrow{CD} \right |^2+2\overrightarrow{AB}\cdot \overrightarrow{CD}+\left |\overrightarrow{CD} \right |^2+\left |\overrightarrow{EF} \right |^2+2\overrightarrow{CD}\cdot \overrightarrow{EF}+\left |\overrightarrow{EF} \right |^2+\left |\overrightarrow{AB} \right |^2+2\overrightarrow{EF}\cdot \overrightarrow{AB}$
$=2\left |\overrightarrow{AB} \right |^2+2\left |\overrightarrow{CD} \right |^2+2\left |\overrightarrow{EF} \right |^2+2\overrightarrow{AB}\cdot \overrightarrow{CD}+2\overrightarrow{CD}\cdot \overrightarrow{EF}+2\overrightarrow{EF}\cdot \overrightarrow{AB}$
$=2*(\left |\overrightarrow{AB} \right |^2+\left |\overrightarrow{CD} \right |^2+\left |\overrightarrow{EF} \right |^2+\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{CD}\cdot \overrightarrow{EF}+\overrightarrow{EF}\cdot \overrightarrow{AB})$
$=2*18$
$=36$
定位:简单题
GMA Round 1 向量计算的更多相关文章
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- GMA Round 1 数列与方程
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a ...
- GMA Round 1 离心率
传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...
- GMA Round 1 波动函数
传送门 波动函数 f(x)是一个定义在R上的偶函数,f(x)=f(2-x),当$x\in[-1,1]$时,f(x)=cos(x),则函数$g(x)=f(x)-|cos(\pi x)|$,求g(x)在[ ...
- GMA Round 1 新年的复数
传送门 新年的复数 已知$\left\{\begin{matrix}A>B>0\\ AB=1\\ (A+B)(A-B)=2\sqrt{3}\end{matrix}\right.$ 求$(A ...
- GMA Round 1 空降
传送门 空降 在一块100m*100m的平地上,10位战士从天而降!他们每人会均匀随机地落在这个地图上的一个点. 紧随其后,BOSS随机出现在这个地图上的某一点,然后它会奔向位于左上角的出口,而战士们 ...
- GMA Round 1 新程序
传送门 新程序 程序框图如图所示,当输入的n=时,输出结果的ans是多少? 容易看出该程序求n以内质数个数,50以内有15个. 定位:简单题
- GMA Round 1 三角形
传送门 三角形 在△ABC中已知$sin2A+sin2B+sin2C=\frac{3\sqrt{3}}{2}$,求$cos\frac{A}{2}*cos\frac{B}{2}*cos\frac{C}{ ...
- GMA Round 1 最短距离
传送门 最短距离 在椭圆C:$\frac{x^2}{20^2}+\frac{y^2}{18^2}=1$上作两条相互垂直的切线,切线交点为P,求P到椭圆C的最短距离.结果保留6位小数. 设椭圆方程:$\ ...
随机推荐
- php抽奖概率算法
方法一: function get_rand($proArr) { $result = array(); foreach ($proArr as $key => $val) { $arr[$ke ...
- 1419: Red is good
题解: 很简单的期望dp 转移方程显然,max一个0就可以了 #include <bits/stdc++.h> using namespace std; #define rep(i,h,t ...
- Android 开发随笔
1 获取屏幕尺寸 WindowManager wm = this.getWindowManager();viewWidth = wm.getDefaultDisplay().getWidth();vi ...
- springboot创建错误
1.Unknown system variable 'query_cache_size' 解决:https://www.cnblogs.com/nicknailo/articles/9074804.h ...
- BZOJ4241 历史研究 莫队 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JO ...
- 010 异步处理Rest服务
一:任务 1.任务 使用Runnable异步处理Rest服务 使用DefaultResult异步处理Rest服务 异步处理的配置 2.原理图说明 二:Callable进行异步处理 1.程序 新建一个a ...
- quratz启动流程
SchedulerFactory在创建quartzScheduler的过程中,将会读取配置参数,初始化各个组件. 1.启动流程图 2.ThreadPool 一般是使用SimpleThreadPool, ...
- 利用log4添加log
應用log4net.dll 新建Global.asax,在cs文件中添加 protected void Application_Start(object sender, EventArgs e) ...
- 第K人||约瑟夫环(链表)
http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4442 很容易超时 通过数组来记录,删除 //数组从1开始好像不行 后面一些数字就乱码了,因 ...
- HDU 4768 Flyer【二分】||【异或】
<题目链接> <转载于 >>> > 题目链接: n个社团派发传单,有a,b,c三个参数,派发的规则是,派发给序号为a,a+c....a+k*c,序号要求是小 ...