传送门

向量计算

  已知$\left |\overrightarrow{AB} \right |^2+\left |\overrightarrow{CD} \right |^2+\left |\overrightarrow{EF} \right |^2+\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{CD}\cdot \overrightarrow{EF}+\overrightarrow{EF}\cdot \overrightarrow{AB}=18$

  求$\left | \overrightarrow{AB}+\overrightarrow{CD} \right |^2+ \left | \overrightarrow{CD}+\overrightarrow{EF} \right |^2+ \left | \overrightarrow{EF}+\overrightarrow{AB} \right |^2$

$\left | \overrightarrow{AB}+\overrightarrow{CD} \right |^2+ \left | \overrightarrow{CD}+\overrightarrow{EF} \right |^2+ \left | \overrightarrow{EF}+\overrightarrow{AB} \right |^2$

$=\left |\overrightarrow{AB} \right |^2+\left |\overrightarrow{CD} \right |^2+2\overrightarrow{AB}\cdot \overrightarrow{CD}+\left |\overrightarrow{CD} \right |^2+\left |\overrightarrow{EF} \right |^2+2\overrightarrow{CD}\cdot \overrightarrow{EF}+\left |\overrightarrow{EF} \right |^2+\left |\overrightarrow{AB} \right |^2+2\overrightarrow{EF}\cdot \overrightarrow{AB}$

$=2\left |\overrightarrow{AB} \right |^2+2\left |\overrightarrow{CD} \right |^2+2\left |\overrightarrow{EF} \right |^2+2\overrightarrow{AB}\cdot \overrightarrow{CD}+2\overrightarrow{CD}\cdot \overrightarrow{EF}+2\overrightarrow{EF}\cdot \overrightarrow{AB}$

$=2*(\left |\overrightarrow{AB} \right |^2+\left |\overrightarrow{CD} \right |^2+\left |\overrightarrow{EF} \right |^2+\overrightarrow{AB}\cdot \overrightarrow{CD}+\overrightarrow{CD}\cdot \overrightarrow{EF}+\overrightarrow{EF}\cdot \overrightarrow{AB})$

$=2*18$

$=36$

定位:简单题

GMA Round 1 向量计算的更多相关文章

  1. GMA Round 1

    学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...

  2. GMA Round 1 数列与方程

    传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a ...

  3. GMA Round 1 离心率

    传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...

  4. GMA Round 1 波动函数

    传送门 波动函数 f(x)是一个定义在R上的偶函数,f(x)=f(2-x),当$x\in[-1,1]$时,f(x)=cos(x),则函数$g(x)=f(x)-|cos(\pi x)|$,求g(x)在[ ...

  5. GMA Round 1 新年的复数

    传送门 新年的复数 已知$\left\{\begin{matrix}A>B>0\\ AB=1\\ (A+B)(A-B)=2\sqrt{3}\end{matrix}\right.$ 求$(A ...

  6. GMA Round 1 空降

    传送门 空降 在一块100m*100m的平地上,10位战士从天而降!他们每人会均匀随机地落在这个地图上的一个点. 紧随其后,BOSS随机出现在这个地图上的某一点,然后它会奔向位于左上角的出口,而战士们 ...

  7. GMA Round 1 新程序

    传送门 新程序 程序框图如图所示,当输入的n=时,输出结果的ans是多少? 容易看出该程序求n以内质数个数,50以内有15个. 定位:简单题

  8. GMA Round 1 三角形

    传送门 三角形 在△ABC中已知$sin2A+sin2B+sin2C=\frac{3\sqrt{3}}{2}$,求$cos\frac{A}{2}*cos\frac{B}{2}*cos\frac{C}{ ...

  9. GMA Round 1 最短距离

    传送门 最短距离 在椭圆C:$\frac{x^2}{20^2}+\frac{y^2}{18^2}=1$上作两条相互垂直的切线,切线交点为P,求P到椭圆C的最短距离.结果保留6位小数. 设椭圆方程:$\ ...

随机推荐

  1. RPC远程过程调用实例

    什么是RPC RPC 的全称是 Remote Procedure Call 是一种进程间通信方式.它允许程序调用另一个地址空间(通常是共享网络的另一台机器上)的过程或函数,而不用程序员显式编码这个远程 ...

  2. JS如何监听动画结束

    场景描述 在使用JS控制动画时一般需要在动画结束后执行回调去进行DOM的相关操作,所以需要监听动画结束进行回调.JS提供了以下事件用于监听动画的结束,简单总结学习下. CSS3动画监听事件 trans ...

  3. Codeforces 922F Divisibility 构造

    Divisibility 我们考虑删数字 首先我们可以发现有一类数很特殊就是大于 n / 2的素数, 因为这些素数的贡献只有1, 并且在n大的时候, 这些素数的个数不是很少, 我们可以最后用这些数去调 ...

  4. Codeforces 844F Anti-Palindromize 最小费用流

    Anti-Palindromize 想到网络流就差不多了, 拆拆点, 建建边. #include<bits/stdc++.h> #define LL long long #define f ...

  5. 桐桐的数学游戏(N皇后)

    题目描述 相信大家都听过经典的“八皇后”问题吧?这个游戏要求在一个8×8的棋盘上放置8个皇后,使8个皇后互相不攻击(攻击的含义是有两个皇后在同一行或同一列或同一对角线上). 桐桐对这个游戏很感兴趣,也 ...

  6. Python scrapy爬虫学习笔记01

    1.scrapy 新建项目 scrapy startproject 项目名称 2.spiders编写(以爬取163北京新闻为例) 此例中用到了scrapy的Itemloader机制,itemloade ...

  7. 防止vs编译时自动启动单元测试

    Tools → Options → Live Unit Testing   Pause 勾选

  8. java读写excel文件( POI解析Excel)

    package com.zhx.base.utils; import org.apache.poi.hssf.usermodel.HSSFWorkbook; import org.apache.poi ...

  9. 【JavaScript】浏览器

    No1: [window]全局作用域,而且表示浏览器窗口 innerWidth和innerHeight属性,可以获取浏览器窗口的内部宽度和高度.内部宽高是指除去菜单栏.工具栏.边框等占位元素后,用于显 ...

  10. POJ 3237 Tree 【树链剖分】+【线段树】

    <题目链接> 题目大意: 给定一棵树,该树带有边权,现在对该树进行三种操作: 一:改变指定编号边的边权: 二:对树上指定路径的边权全部取反: 三:查询树上指定路径的最大边权值. 解题分析: ...