lightoj1038(数学期望dp)
题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1
求变成1所期望的次数
解析:
d[i] 代表从i除到1的期望步数;那么假设i一共有c个因子(包括1和本身)
d[i] = ( d[1] + d[a2] + d[a3] + d[a4] ..... + d[i] + c) / c; (加c是因为每一个期望值都会加1,因为多出一步才变成它(即第一次从i到它的因子的那一步))
把右边的dp[i] 移到左边 化简得
dp[i] = ( d[1] + d[a2] + d[a3] + d[a4] ..... + d[i-1] + c) / (c-1)
注意:不能太暴力求因数,折半求 还有。。。。mmp。。不要用Java做。。。。
这一题与lightoj1030 的思路一样 都是期望dp
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn = ;
int cnt;
int main() {
int res = ;
double dp[maxn];
mem(dp,);
int temp;
for(int i=;i<maxn;i++)
{
cnt = ;
double sum = ;
for(int j=;j<=sqrt(i+0.5);j++)
{
if(i % j == )
{
sum += dp[j];
cnt++;
if(j != i/j){
sum += dp[i/j];
cnt++;
}
} }
dp[i] = (sum + cnt)/(double)(cnt-);
}
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&temp);
printf("Case %d: %.10f\n",++res,dp[temp]);
} return ;
}
lightoj1038(数学期望dp)的更多相关文章
- codeforces1097D Makoto and a Blackboard 数学+期望dp
题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp 好题好题!! ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- BZOJ 1426: 收集邮票 数学期望 + DP
Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...
- CF708E-Student‘s Camp【数学期望,dp】
正题 题目链接:https://www.luogu.com.cn/problem/CF708E 题目大意 有\(n*m\)的矩形网格,然后每次每行最左边和最右边的格子各有\(p=\frac{c}{d} ...
- 【CF712E】Memory and Casinos(数学 期望 DP)
题目链接 大意 给出一个序列,当你在某个点时,有一个向右走的概率\(P_i\)(向左为\(1-P_i\)), 给出\(M\)个操作,操作有两类: 1 X Y Z:把\(P_X\)的值修改为\(\fra ...
- [题解]数学期望_luogu_P1850_换教室
数学期望dp,题面第一次见很吓人,然而从CCF语翻译成人话就简单多了, 开始一般会想到用 f [ i ] [ j ]表示前 i 个课程申请 j 次的期望,然而其实会发现转移的时候还和上一次的情况有关( ...
- [2013山东ACM]省赛 The number of steps (可能DP,数学期望)
The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...
- UVa 11427 Expect the Expected (数学期望 + 概率DP)
题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
随机推荐
- ( 转)Ubuntu下创建、重命名、删除文件及文件夹,强制清空回收站方法
Ubuntu下创建.重命名.删除文件及文件夹,强制清空回收站方法 mkdir 目录名 ——创建一个目录 rmdir 空目录名 ——删除一个空目录 rm 文件名 文件名 ——删除一个文件或多个文件 rm ...
- 将当前的Ubuntu系统封装成为可以安装(发布)的iso镜像
将当前的Ubuntu系统封装成为可以安装(发布)的iso镜像 在使用以上方法安装依赖的时候xresprobe 会找不到安装地址,采用下面的方式: Package xresprobe is not in ...
- 快速零配置迁移 API 适配 iOS 对 IPv6 以及 HTTPS 的要求
本文快速分享一下快速零配置迁移 API 适配 iOS 对 IPv6 以及 HTTPS 的要求的方法,供大家参考. 原文发表于我的技术博客 零配置方案 最新的苹果审核政策对 API 的 IPv6 以及 ...
- sql 某字段存储另一个表的多个id值并以逗号分隔,现根据id去中文并拼接同样以逗号分隔
首先介绍用到的两个函数 charindex(要查找的表达式1,表达式2),返回值为表达式1在表达式2中的下标,未找到则返回0.(sql的下标是从1开始的),例如 select charindex('s ...
- 牛客小白月赛6-E对弈-简单搜索
https://www.nowcoder.com/acm/contest/136/E 我搜索很差啊,看了学长代码,自己在下面手敲了一遍,感觉学长的极其精巧,把我繁琐的搜索步骤给简化了不少 其实本题想法 ...
- pair work 附加题解法(张艺 杨伊)
1.改进电梯调度的interface 设计, 让它更好地反映现实, 更能让学生练习算法, 更好地实现信息隐藏和信息共享,目前的设计有什么缺点, 你会如何改进它? 目前的缺点: (1)电梯由于载客重量不 ...
- 《Linux内核设计与实现》读书笔记四
Chapter 3 进程管理 3.1 进程 进程就是处于执行期的程序(目标码存放在某种存储介质上),但进程并不仅仅局限于一段可执行程序代码.通常进程还要包含其他资源,像打开的文件,挂起的信号,内核内部 ...
- GuiHelloWorld
package com.home.test; import java.awt.Color; import java.awt.Cursor; import java.awt.Font; import j ...
- 计算机终端安装成功的包 pycharm不能更新
最近在学习python的时候遇到一个麻烦事 要用到pymssql包 在CMD下已经安装成功 但是在pycharm中运行的时候出现 没有这个包 以往的方法是在设置界面 通过+号安装需要的包 但 ...
- 201306114357-实验3-C语言
#include<stdio.h>#include <stdlib.h>#include <time.h>main(){ int a,b,c,n,u,i,sum; ...